Send to

Choose Destination
Chem Res Toxicol. 2016 Feb 15;29(2):162-8. doi: 10.1021/acs.chemrestox.5b00371. Epub 2016 Jan 21.

Identification of New and Distinctive Exposures from Little Cigars.

Author information

Battelle , 505 King Avenue, Columbus, Ohio 43201, United States.
School of Public Health, Department of Behavioral and Community Health, Tobacco Center of Regulatory Science, University of Maryland , College Park, Maryland 20742, United States.


Little cigar mainstream smoke is less well-characterized than cigarette mainstream smoke in terms of chemical composition. This study compared four popular little cigar products against four popular cigarette products to determine compounds that are either unique to or more abundant in little cigars. These compounds are categorized as new or distinctive exposures, respectively. Total particulate matter samples collected from machine-generated mainstream smoke were extracted with methylene chloride, and the extracts were analyzed using two-dimensional gas chromatography-time-of-flight mass spectrometry. The data were evaluated using novel data-processing algorithms that account for characteristics specific to the selected analytical technique and variability associated with replicate sample analyses. Among more than 25 000 components detected across the complete data set, ambrox was confirmed as a new exposure, and 3-methylbutanenitrile and 4-methylimidazole were confirmed as distinctive exposures. Concentrations of these compounds for the little cigar mainstream smoke were estimated at approximately 0.4, 0.7, and 12 μg/rod, respectively. In achieving these results, this study has demonstrated the capability of a powerful analytical approach to identify previously uncharacterized tobacco-related exposures from little cigars. The same approach could also be applied to other samples to characterize constituents associated with tobacco product classes or specific tobacco products of interest. Such analyses are critical in identifying tobacco-related exposures that may affect public health.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for American Chemical Society Icon for PubMed Central
Loading ...
Support Center