Format

Send to

Choose Destination
Eur Thyroid J. 2015 Sep;4(Suppl 1):51-8. doi: 10.1159/000430840. Epub 2015 May 28.

Quantitative Analysis of Thyroid Hormone Metabolites in Cell Culture Samples Using LC-MS/MS.

Author information

1
Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany.

Abstract

A liquid-liquid extraction and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-MS/MS) method to determine iodothyronines and thyronamines (TAM) from cell culture media was developed. Thyroid hormones (TH) are metabolized by sequential deiodination to eventually yield thyronine (T0), but can also be decarboxylated, resulting in TAM. The method presented here for extraction of DMEM/F12 cell culture media is a fundamental procedure for a precise determination of 9 TH and 6 TAM from a single LC run. Analytes and internal standards (IS) were extracted from DMEM/F12 (w/o phenol red) by liquid-liquid extraction using isopropanol-TBME (30:70 v/v). Measurement of TH and TAM was performed during a 10-min run time using (13)C6-T4, (13)C6-T3, (13)C6-rT3, (13)C6-3,3'T2 and (2)H4-T1AM as IS. Calibration curves covered 11 calibrators measured as triplicates each for the analysis of the 9 TH and 6 TAM metabolites, and the 5 IS were linear and reproducible in the range of 0.12-120 nM (R(2) 0.991-0.999) for all calibrators. The lower limit of quantification was 0.078-0.234 nM. Method validation and robustness were demonstrated by the analysis of precision, accuracy, process efficiency, matrix effects and recoveries, as well as intra- and interassay stability. These parameters were investigated for high, middle and low concentrations of quality controls of all 9 TH and 6 TAM metabolites. This validated, sensitive and interaction-free LC-MS/MS method allows rapid analysis and accurate determination of TH and TAM from DMEM/F12 (w/o phenol red) conditioned media and seems to be easily transferable and applied to commonly used buffers and cell culture media.

KEYWORDS:

Culture media; Iodothyronine; LC-MS/MS; Liquid-liquid extraction; Thyroid hormone metabolite; Thyronamine

Supplemental Content

Full text links

Icon for S. Karger AG, Basel, Switzerland Icon for PubMed Central
Loading ...
Support Center