Send to

Choose Destination
PLoS One. 2015 Nov 16;10(11):e0143078. doi: 10.1371/journal.pone.0143078. eCollection 2015.

The Deubiquitinating Enzyme UBPY Is Required for Lysosomal Biogenesis and Productive Autophagy in Drosophila.

Author information

Université Grenoble-Alpes, F-38041, Grenoble, France; CEA-DSV-iRTSV-BGE-Gen&Chem, F-38054, Grenoble, France; INSERM, U1038, F-38054, Grenoble, France.
Université Grenoble Alpes, IBS, F-38044, Grenoble, France; CNRS, IBS, F-38044, Grenoble, France; CEA, IBS, F-38044, Grenoble, France.


Autophagy is a catabolic process that delivers cytoplasmic components to the lysosomes. Protein modification by ubiquitination is involved in this pathway: it regulates the stability of autophagy regulators such as BECLIN-1 and it also functions as a tag targeting specific substrates to autophagosomes. In order to identify deubiquitinating enzymes (DUBs) involved in autophagy, we have performed a genetic screen in the Drosophila larval fat body. This screen identified Uch-L3, Usp45, Usp12 and Ubpy. In this paper, we show that Ubpy loss of function results in the accumulation of autophagosomes due to a blockade of the autophagy flux. Furthermore, analysis by electron and confocal microscopy of Ubpy-depleted fat body cells revealed altered lysosomal morphology, indicating that Ubpy inactivation affects lysosomal maintenance and/or biogenesis. Lastly, we have shown that shRNA mediated inactivation of UBPY in HeLa cells affects autophagy in a different way: in UBPY-depleted HeLa cells autophagy is deregulated.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center