Format

Send to

Choose Destination
AIDS. 2015 Dec;29 Suppl 3:S221-30. doi: 10.1097/QAD.0000000000000924.

Targeted screening of at-risk adults for acute HIV-1 infection in sub-Saharan Africa.

Author information

1
aCentre for Geographic Medicine Research - Coast, Kenya Medical Research Institute (KEMRI) - Kilifi, Kenya bNuffield Department of Medicine, University of Oxford, Headington, UK cDepartment of Global Health, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands dDepartment of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA eCentre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa fMaisha Consulting bvba, Tildonk, Belgium gUNC Project Malawi, Lilongwe, Malawi hDepartments of Medicine, Global Health, and Epidemiology, University of Washington, Seattle, Washington iDepartment of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

Abstract

BACKGROUND:

Patients with acute HIV-1 infection (AHI) have elevated infectivity, but cannot be diagnosed using antibody-based testing. Approaches to screen patients for AHI are urgently needed to enable counselling and treatment to reduce onward transmission.

METHODS:

We pooled data from four African studies of high-risk adults that evaluated symptoms and signs compatible with acute retroviral syndrome and tested for HIV-1 at each visit. AHI was defined as detectable plasma viral load or p24 antigen in an HIV-1-antibody-negative patient who subsequently seroconverted. Using generalized estimating equation, we identified symptoms, signs, and demographic factors predictive of AHI, adjusting for study site. We assigned a predictor score to each statistically significant predictor based on its beta coefficient, summing predictor scores to calculate a risk score for each participant. We evaluated the performance of this algorithm overall and at each site.

RESULTS:

We compared 122 AHI visits with 45 961 visits by uninfected patients. Younger age (18-29 years), fever, fatigue, body pains, diarrhoea, sore throat, and genital ulcer disease were independent predictors of AHI. The overall area under the receiver operating characteristics curve (AUC) for the algorithm was 0.78, with site-specific AUCs ranging from 0.61 to 0.89. A risk score of at least 2 would indicate AHI testing for 5-50% of participants, substantially decreasing the number needing testing.

CONCLUSION:

Our targeted risk score algorithm based on seven characteristics reduced the number of patients needing AHI testing and had good performance overall. We recommend this risk score algorithm for use by HIV programs in sub-Saharan Africa with capacity to test high-risk patients for AHI.

PMID:
26562811
PMCID:
PMC4714928
DOI:
10.1097/QAD.0000000000000924
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wolters Kluwer Icon for PubMed Central
Loading ...
Support Center