Format

Send to

Choose Destination
Oncotarget. 2016 Jan 5;7(1):308-22. doi: 10.18632/oncotarget.5687.

Caveolin-1 regulates cancer cell metabolism via scavenging Nrf2 and suppressing MnSOD-driven glycolysis.

Author information

1
Department of Medicine, University of Illinois College of Medicine at Chicago, Chicago, IL, USA.
2
Department of Pathology, University of Illinois College of Medicine at Chicago, Chicago, IL, USA.
3
Programa de Biociencias Aplicadas a Farmacia (PBF) Universidade Estadual de Maringa, Maringa, PR, Brazil.
4
Department of Oncology, Georgetown University, Medical Center, Washington, D.C., USA.
5
Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine at Chicago, Chicago, IL, USA.
6
Department of Pharmacology, University of Illinois College of Medicine at Chicago, Chicago, IL, USA.
7
Department of Anesthesiology, University of Illinois College of Medicine at Chicago, Chicago, IL, USA.

Abstract

Aerobic glycolysis is an indispensable component of aggressive cancer cell metabolism. It also distinguishes cancer cells from most healthy cell types in the body. Particularly for this reason, targeting the metabolism to improve treatment outcomes has long been perceived as a potentially valuable strategy. In practice, however, our limited knowledge of why and how metabolic reprogramming occurs has prevented progress towards therapeutic interventions that exploit the metabolic peculiarities of tumors. We recently described that in breast cancer, MnSOD upregulation is both necessary and sufficient to activate glycolysis. Here, we focused on determining the molecular mechanisms of MnSOD upregulation. We found that Caveolin-1 (Cav-1) is a central component of this mechanism due to its suppressive effects of NF-E2-related factor 2 (Nrf2), a transcription factor upstream of MnSOD. In transformed MCF10A(Er/Src) cells, Cav-1 loss preceded the activation of Nrf2 and its induction of MnSOD expression. Consistently, with previous observations, MnSOD expression secondary to Nrf2 activation led to an increase in the glycolytic rate dependent on mtH2O2 production and the activation of AMPK. Moreover, rescue of Cav-1 expression in a breast cancer cell line (MCF7) suppressed Nrf2 and reduced MnSOD expression. Experimental data were reinforced by epidemiologic nested case-control studies showing that Cav-1 and MnSOD are inversely expressed in cases of invasive ductal carcinoma, with low Cav-1 and high MnSOD expression being associated with lower 5-year survival rates and molecular subtypes with poorest prognosis.

KEYWORDS:

Caveolin-1; MnSOD; Nrf2; breast cancer; tumor progression

PMID:
26543228
PMCID:
PMC4808000
DOI:
10.18632/oncotarget.5687
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Impact Journals, LLC Icon for PubMed Central
Loading ...
Support Center