Format

Send to

Choose Destination
Cereb Cortex. 2016 Jan;26(1):440-9. doi: 10.1093/cercor/bhv262. Epub 2015 Nov 2.

Constructing Visual Perception of Body Movement with the Motor Cortex.

Author information

1
Department of Psychology, Goldsmiths, University of London, SE14 6NW, London, UK Institute of Cognitive Neuroscience, University College London, WC1N 3AR, London, UK.
2
Cognitive Neuroscience Section, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, 52428 Juelich, Germany Department of Neurology, University Hospital Cologne, 50937 Cologne, Germany.
3
Institute of Cognitive Neuroscience, University College London, WC1N 3AR, London, UK Center for Information and Neural Networks (CiNet), 1-4 Yamadaoka, Suita City, Osaka 565-0871, Japan.
4
Institute of Cognitive Neuroscience, University College London, WC1N 3AR, London, UK.

Abstract

The human brain readily perceives fluent movement from static input. Using functional magnetic resonance imaging, we investigated brain mechanisms that mediate fluent apparent biological motion (ABM) perception from sequences of body postures. We presented body and nonbody stimuli varying in objective sequence duration and fluency of apparent movement. Three body postures were ordered to produce a fluent (ABC) or a nonfluent (ACB) apparent movement. This enabled us to identify brain areas involved in the perceptual reconstruction of body movement from identical lower-level static input. Participants judged the duration of a rectangle containing body/nonbody sequences, as an implicit measure of movement fluency. For body stimuli, fluent apparent motion sequences produced subjectively longer durations than nonfluent sequences of the same objective duration. This difference was reduced for nonbody stimuli. This body-specific bias in duration perception was associated with increased blood oxygen level-dependent responses in the primary (M1) and supplementary motor areas. Moreover, fluent ABM was associated with increased functional connectivity between M1/SMA and right fusiform body area. We show that perceptual reconstruction of fluent movement from static body postures does not merely enlist areas traditionally associated with visual body processing, but involves cooperative recruitment of motor areas, consistent with a "motor way of seeing".

KEYWORDS:

EBA; FBA; M1; biological motion; motor resonance; visual body perception

PMID:
26534907
PMCID:
PMC4677987
DOI:
10.1093/cercor/bhv262
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center