Format

Send to

Choose Destination
See comment in PubMed Commons below
Front Cell Neurosci. 2015 Oct 14;9:372. doi: 10.3389/fncel.2015.00372. eCollection 2015.

Altered intrinsic excitability of hippocampal CA1 pyramidal neurons in aged PDAPP mice.

Author information

  • 1Medical School, University of Exeter Exeter, UK ; School of Physiology and Pharmacology, University of Bristol Bristol, UK.
  • 2Department of Mathematics, College of Engineering, Mathematics and Physical Sciences, University of Exeter Exeter, UK.

Abstract

Amyloidopathy involves the accumulation of insoluble amyloid β (Aβ) species in the brain's parenchyma and is a key histopathological hallmark of Alzheimer's disease (AD). Work on transgenic mice that overexpress Aβ suggests that elevated Aβ levels in the brain are associated with aberrant epileptiform activity and increased intrinsic excitability (IE) of CA1 hippocampal neurons. In this study we examined if similar changes could be observed in hippocampal CA1 pyramidal neurons from aged PDAPP mice (20-23 month old, Indiana mutation: V717F on APP gene) compared to their age-matched wild-type littermate controls. Whole-cell current clamp recordings revealed that sub-threshold intrinsic properties, such as input resistance, resting membrane potential and hyperpolarization activated "sag" were unaffected, but capacitance was significantly decreased in the transgenic animals. No differences between genotypes were observed in the overall number of action potentials (AP) elicited by 500 ms supra-threshold current stimuli. PDAPP neurons, however, exhibited higher instantaneous firing frequencies after accommodation in response to high intensity current injections. The AP waveform was narrower and shorter in amplitude in PDAPP mice: these changes, according to our in silico model of a CA1/3 pyramidal neuron, depended on the respective increase and reduction of K(+) and Na(+) voltage-gated channels maximal conductances. Finally, the after-hyperpolarization, seen after the first AP evoked by a +300 pA current injection and after 50 Hz AP bursts, was more pronounced in PDAPP mice. These data show that Aβ-overexpression in aged mice altered the capacitance, the neuronal firing and the AP waveform of CA1 pyramidal neurons. Some of these findings are consistent with previous work on younger PDAPP; they also show important differences that can be potentially ascribed to the interaction between amyloidopathy and ageing. Such a change of IE properties over time underlies that the increased incidence of seizure observed in AD patients might rely on different mechanistic pathways during progression of the disease.

KEYWORDS:

Alzheimer’s disease; PDAPP; ageing; amyloidopathy; hippocampus; hyperexcitability; hypoexcitability

PMID:
26528126
PMCID:
PMC4604241
DOI:
10.3389/fncel.2015.00372
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Frontiers Media SA Icon for PubMed Central
    Loading ...
    Support Center