Format

Send to

Choose Destination
Mol Cell Proteomics. 2016 Jan;15(1):93-108. doi: 10.1074/mcp.M115.052332. Epub 2015 Oct 30.

Proteomes of the Female Genital Tract During the Oestrous Cycle.

Author information

1
From the ‡INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; §CNRS, UMR7247, F-37380 Nouzilly, France; ¶Université François Rabelais de Tours, F-37000 Tours, France; ‖IFCE, Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France;
2
From the ‡INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; §CNRS, UMR7247, F-37380 Nouzilly, France; ¶Université François Rabelais de Tours, F-37000 Tours, France; ‖IFCE, Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France; **INRA, Plate-forme d'Analyse Intégrative des Biomolécules (PAIB), Laboratoire de Spectrométrie de Masse, F-37380 Nouzilly, France;
3
From the ‡INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; §CNRS, UMR7247, F-37380 Nouzilly, France; ¶Université François Rabelais de Tours, F-37000 Tours, France; ‖IFCE, Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France; ‡‡Alfort Veterinary School, 94700 Maisons Alfort, France;
4
§§Faculty of Veterinary Science, The University of Sydney NSW 2006, Australia.
5
From the ‡INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; §CNRS, UMR7247, F-37380 Nouzilly, France; ¶Université François Rabelais de Tours, F-37000 Tours, France; ‖IFCE, Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France; Xavier.Druart@tours.inra.fr.

Abstract

The female genital tract includes several anatomical regions whose luminal fluids successively interact with gametes and embryos and are involved in the fertilisation and development processes. The luminal fluids from the inner cervix, the uterus and the oviduct were collected along the oestrous cycle at oestrus (Day 0 of the cycle) and during the luteal phase (Day 10) from adult cyclic ewes. The proteomes were assessed by GeLC-MS/MS and quantified by spectral counting. A set of 940 proteins were identified including 291 proteins differentially present along the cycle in one or several regions. The global analysis of the fluid proteomes revealed a general pattern of endocrine regulation of the tract, with the cervix and the oviduct showing an increased differential proteins abundance mainly at oestrus while the uterus showed an increased abundance mainly during the luteal phase. The proteins more abundant at oestrus included several families such as the heat shock proteins (HSP), the mucins, the complement cascade proteins and several redox enzymes. Other proteins known for their interaction with gametes such as oviductin (OVGP), osteopontin, HSPA8, and the spermadhesin AWN were also overexpressed at oestrus. The proteins more abundant during the luteal phase were associated with the immune system such as ceruloplasmin, lactoferrin, DMBT1, or PIGR, and also with tissue remodeling such as galectin 3 binding protein, alkaline phosphatase, CD9, or fibulin. Several proteins differentially abundant between estrus and the luteal phase, such as myosin 9 and fibronectin, were also validated by immunohistochemistry. The potential roles in sperm transit and uterine receptivity of the proteins differentially regulated along the cycle in the female genital tract are discussed.

PMID:
26518761
PMCID:
PMC4762522
DOI:
10.1074/mcp.M115.052332
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center