Format

Send to

Choose Destination
J Nanosci Nanotechnol. 2015 May;15(5):3862-9.

Preparation and Growth of N-Doped Hollow Carbon Nanospheres and Their Application as Catalyst Support in Direct Borohydride Fuel Cell.

Abstract

N-doped hollow carbon nanospheres (HCNSs) were prepared by electric arc discharge method in N2 atmosphere. X-ray Photoelectron Spectroscopy (XPS) analysis shows that their nitrogen content reaches up to 4.9 atom%. Both the low thermal conductivity of N2 and the doping of nitrogen atom make carbon unit bend to form hollow nanosphere structure. High-resolution transmission electron microscopy (HRTEM) and X-ray diffusion (XRD) analysis prove the presence of detected defects and a poor crystallinity on the HCNSs shell. Moreover, annealing treatment of HCNSs was carried out at 1100 degrees C/10 h and 1400 degrees C/2 h to research their fracture extension. It is found that HCNSs could grow into closed-tubes even with a shell at high annealing temperature. HCNSs were applied in direct borohydride fuel cell (DBFC) to evaluate their catalytic performance. The electrochemical results show that pure HCNSs doesn't have any catalysis effect, but they can greatly promote the catalytic performance of CoO, and the largest polarization current density of which achieves 1.845 A x cm(-2) at -0.7 V (vs. Hg/HgO electrode).

PMID:
26505016
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center