Format

Send to

Choose Destination
Prog Mol Biol Transl Sci. 2015;135:17-37. doi: 10.1016/bs.pmbts.2015.07.020. Epub 2015 Aug 20.

Exercise and Regulation of Carbohydrate Metabolism.

Author information

1
Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA.
2
Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA; Department of Medicine, Brigham, and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA. Electronic address: laurie.goodyear@joslin.harvard.edu.

Abstract

Carbohydrates are the preferred substrate for contracting skeletal muscles during high-intensity exercise and are also readily utilized during moderate intensity exercise. This use of carbohydrates during physical activity likely played an important role during the survival of early Homo sapiens, and genes and traits regulating physical activity, carbohydrate metabolism, and energy storage have undoubtedly been selected throughout evolution. In contrast to the life of early H. sapiens, modern lifestyles are predominantly sedentary. As a result, intake of excessive amounts of carbohydrates due to the easy and continuous accessibility to modern high-energy food and drinks has not only become unnecessary but also led to metabolic diseases in the face of physical inactivity. A resulting metabolic disease is type 2 diabetes, a complex endocrine disorder characterized by abnormally high concentrations of circulating glucose. This disease now affects millions of people worldwide. Exercise has beneficial effects to help control impaired glucose homeostasis with metabolic disease, and is a well-established tool to prevent and combat type 2 diabetes. This chapter focuses on the effects of exercise on carbohydrate metabolism in skeletal muscle and systemic glucose homeostasis. We will also focus on the molecular mechanisms that mediate the effects of exercise to increase glucose uptake in skeletal muscle. It is now well established that there are different proximal signaling pathways that mediate the effects of exercise and insulin on glucose uptake, and these distinct mechanisms are consistent with the ability of exercise to increase glucose uptake in the face of insulin resistance in people with type 2 diabetes. Ongoing research in this area is aimed at defining the precise mechanism by which exercise increases glucose uptake and insulin sensitivity and the types of exercise necessary for these important health benefits.

KEYWORDS:

AMP kinase; GLUT4; Glucose; Glucose transplant; Glycogen; Glycogenolysis

PMID:
26477909
PMCID:
PMC4727532
DOI:
10.1016/bs.pmbts.2015.07.020
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center