Send to

Choose Destination
Curr Opin Plant Biol. 2015 Dec;28:68-75. doi: 10.1016/j.pbi.2015.09.005. Epub 2015 Oct 24.

Regulation of the plasma membrane proton pump (H(+)-ATPase) by phosphorylation.

Author information

Biotechnology Center and Department of Biochemistry, University of Wisconsin-Madison, United States.
Department of Plant Biology, University of Minnesota, United States.
Biotechnology Center and Department of Biochemistry, University of Wisconsin-Madison, United States. Electronic address:


In plants and fungi, energetics at the plasma membrane is provided by a large protonmotive force (PMF) generated by the family of P-type ATPases specialized for proton transport (commonly called PM H(+)-ATPases or, in Arabidopsis, AHAs for Arabidopsis H(+)-ATPases). Studies have demonstrated that this 100-kDa protein is essential for plant growth and development. Posttranslational modifications of the H(+)-ATPase play crucial roles in its regulation. Phosphorylation of several Thr and Ser residues within the carboxy terminal regulatory domain composed of ∼100 amino acids change in response to environmental stimuli, endogenous hormones, and nutrient conditions. Recently developed mass spectrometric technologies provide a means to carefully quantify these changes in H(+)-ATPase phosphorylation at the different sites. These chemical modifications can then be genetically tested in planta by complementing the loss-of-function aha mutants with phosphomimetic mutations. Interestingly, recent data suggest that phosphatase-mediated changes in PM H(+)-ATPase phosphorylation are important in mediating auxin-regulated growth. Thus, as with another hormone (abscisic acid), dephosphorylation by phosphatases, rather than kinase mediated phosphorylation, may be an important focal point for regulation during plant signal transduction. Although interactions with other proteins have also been implicated in ATPase regulation, the very hydrophobic nature and high concentration of this polytopic protein presents special challenges in evaluating the biological significance of these interactions. Only by combining biochemical and genetic experiments can we attempt to meet these challenges to understand the essential molecular details by which this protein functions in planta.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center