Comparison and Field Validation of Binomial Sampling Plans for Oligonychus perseae (Acari: Tetranychidae) on Hass Avocado in Southern California

J Econ Entomol. 2015 Aug;108(4):2074-89. doi: 10.1093/jee/tov141. Epub 2015 Jun 11.

Abstract

Oligonychus perseae Tuttle, Baker, & Abatiello is a foliar pest of 'Hass' avocados [Persea americana Miller (Lauraceae)]. The recommended action threshold is 50-100 motile mites per leaf, but this count range and other ecological factors associated with O. perseae infestations limit the application of enumerative sampling plans in the field. Consequently, a comprehensive modeling approach was implemented to compare the practical application of various binomial sampling models for decision-making of O. perseae in California. An initial set of sequential binomial sampling models were developed using three mean-proportion modeling techniques (i.e., Taylor's power law, maximum likelihood, and an empirical model) in combination with two-leaf infestation tally thresholds of either one or two mites. Model performance was evaluated using a robust mite count database consisting of >20,000 Hass avocado leaves infested with varying densities of O. perseae and collected from multiple locations. Operating characteristic and average sample number results for sequential binomial models were used as the basis to develop and validate a standardized fixed-size binomial sampling model with guidelines on sample tree and leaf selection within blocks of avocado trees. This final validated model requires a leaf sampling cost of 30 leaves and takes into account the spatial dynamics of O. perseae to make reliable mite density classifications for a 50-mite action threshold. Recommendations for implementing this fixed-size binomial sampling plan to assess densities of O. perseae in commercial California avocado orchards are discussed.

Keywords: Persea americana; fixed-size binomial sampling; monitoring; persea mite; sequential sampling.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • California
  • Persea / growth & development*
  • Plant Leaves / growth & development
  • Population Density
  • Tetranychidae / physiology*
  • Tick Control / methods*