Send to

Choose Destination
Physiol Res. 2015;64 Suppl 1:S41-9.

The comparison of in vivo properties of water-soluble HPMA-based polymer conjugates with doxorubicin prepared by controlled RAFT or free radical polymerization.

Author information

Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic.


Two conjugates of anticancer drug doxorubicin (Dox) covalently bound by the hydrolytically degradable hydrazone bond to the polymer carrier based on water-soluble N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers were synthesized and their properties were compared, namely their behavior in vivo. The polymer carriers differed in dispersity due to different methods of synthesis; the carrier with relatively high dispersity (HD) was prepared by free radical polymerization (Mw=29,900 g/mol, D=1.75) and the carrier with low dispersity (LD) by controlled radical polymerization (Mw=30,000 g/mol, D=1.13). Both polymer-Dox conjugates showed prolonged blood circulation and tumor accumulation of the drug in comparison with the free drug; e.g. the tumor-to-blood ratio for the polymer-bound Dox was 3-5 times higher. The LD polymer-Dox conjugate exhibited moderately higher tumor accumulation than the HD one at a dose of 1x15 mg Dox (eq.)/kg. Also, their anti-tumor activity did not differ when injected at this dose. However, the increase of the dose to 1x25 mg Dox (eq.)/kg resulted in the enhanced therapeutic activity of the conjugates, especially of the LD one with 100% of long-term survivals. The dispersity of polymer drug carriers influenced the tumor accumulation rate, which affected the overall anti-cancer activity of polymer-drug conjugates.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Institute of Physiology, Academy of Sciences of the Czech Republic, Prague
Loading ...
Support Center