Format

Send to

Choose Destination
Curr Biol. 2015 Oct 19;25(20):2677-83. doi: 10.1016/j.cub.2015.08.046. Epub 2015 Oct 1.

Actin-Based Transport Adapts Polarity Domain Size to Local Cellular Curvature.

Author information

1
Institut Jacques Monod, 15 Rue Hélène Brion, 75205 Paris Cedex 13, France.
2
Institut Jacques Monod, 15 Rue Hélène Brion, 75205 Paris Cedex 13, France; Université Pierre et Marie Curie, 15 Rue de l'Ecole de Médecine, 75205 Paris Cedex 06, France.
3
Institut Jacques Monod, 15 Rue Hélène Brion, 75205 Paris Cedex 13, France. Electronic address: nicolas.minc@ijm.fr.

Abstract

Intracellular structures and organelles such as the nucleus, the centrosome, or the mitotic spindle typically scale their size to cell size [1]. Similarly, cortical polarity domains built around the active form of conserved Rho-GTPases, such as Cdc42p, exhibit widths that may range over two orders of magnitudes in cells with different sizes and shapes [2-6]. The establishment of such domains typically involves positive feedback loops based on reaction-diffusion and/or actin-mediated vesicle transport [3, 7, 8]. How these elements may adapt polarity domain size to cellular geometry is not known. Here, by tracking the width of successive oscillating Cdc42-GTP domains in fission yeast spores [9], we find that domain width scales with local cell-surface radii of curvature over an 8-fold range, independently of absolute cell volume, surface, or Cdc42-GTP concentration. This local scaling requires formin-nucleated cortical actin cables and the fusion of secretory vesicles transported along these cables with the membrane. These data suggest that reaction-diffusion may set a minimal domain size and that secretory vesicle transport along actin cables may dilute and extend polarity domains to adapt their size to local cell-surface curvature. This work reveals that actin networks may act as micrometric curvature sensors and uncovers a generic morphogenetic principle for how polarity domains define their size according to cell morphologies.

PMID:
26441355
DOI:
10.1016/j.cub.2015.08.046
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center