Format

Send to

Choose Destination
Physiol Rep. 2015 Sep;3(9). pii: e12533. doi: 10.14814/phy2.12533.

Kir6.2 activation by sulfonylurea receptors: a different mechanism of action for SUR1 and SUR2A subunits via the same residues.

Author information

1
Institut de Biologie Structurale (IBS), University of Grenoble Alpes, Grenoble, France CNRS, IBS, Grenoble, France CEA, IBS, Grenoble, France.
2
Institut Interdisciplinaire de Neurosciences CNRS UMR 5297, Bordeaux, France.
3
Institut de Biologie Structurale (IBS), University of Grenoble Alpes, Grenoble, France CNRS, IBS, Grenoble, France CEA, IBS, Grenoble, France jean.revilloud@ibs.fr.

Abstract

ATP-sensitive potassium channels (K-ATP channels) play a key role in adjusting the membrane potential to the metabolic state of cells. They result from the unique combination of two proteins: the sulfonylurea receptor (SUR), an ATP-binding cassette (ABC) protein, and the inward rectifier K(+) channel Kir6.2. Both subunits associate to form a heterooctamer (4 SUR/4 Kir6.2). SUR modulates channel gating in response to the binding of nucleotides or drugs and Kir6.2 conducts potassium ions. The activity of K-ATP channels varies with their localization. In pancreatic β-cells, SUR1/Kir6.2 channels are partly active at rest while in cardiomyocytes SUR2A/Kir6.2 channels are mostly closed. This divergence of function could be related to differences in the interaction of SUR1 and SUR2A with Kir6.2. Three residues (E1305, I1310, L1313) located in the linker region between transmembrane domain 2 and nucleotide-binding domain 2 of SUR2A were previously found to be involved in the activation pathway linking binding of openers onto SUR2A and channel opening. To determine the role of the equivalent residues in the SUR1 isoform, we designed chimeras between SUR1 and the ABC transporter multidrug resistance-associated protein 1 (MRP1), and used patch clamp recordings on Xenopus oocytes to assess the functionality of SUR1/MRP1 chimeric K-ATP channels. Our results reveal that the same residues in SUR1 and SUR2A are involved in the functional association with Kir6.2, but they display unexpected side-chain specificities which could account for the contrasted properties of pancreatic and cardiac K-ATP channels.

KEYWORDS:

ATP‐sensitive K+ channels; Diazoxide; functional coupling

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center