Format

Send to

Choose Destination
Poult Sci. 2015 Nov;94(11):2797-804. doi: 10.3382/ps/pev255. Epub 2015 Sep 14.

Effect of dietary creatine monohydrate supplementation on muscle lipid peroxidation and antioxidant capacity of transported broilers in summer.

Author information

1
College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing 210095, China College of Science, Nanjing Agricultural University, Nanjing 210095, China.
2
College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing 210095, China.
3
College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing 210095, China zhanglin2012@njau.edu.cn.

Abstract

This experiment was to evaluate the effect of dietary supplementation with creatine monohydrate (CMH) during the finishing period on the muscle lipid peroxidation and antioxidant capacity of broilers that experienced transport stress in summer. A total of 320 male Arbor Acres broilers (28 d in age) were randomly allotted to 3 dietary treatments including a basal control diet without additional CMH (160 birds), or with 600 (80 birds) or 1,200 mg/kg (80 birds) CMH for 14 d. On the morning of d 42, after an 8-h fast, the birds fed the basal diets were divided into 2 equal groups, and all birds in the 4 groups of 80 birds were transported according to the following protocols: 1) a 0.75-h transport of birds on basal diets (as a lower-stress control group), 2) a 3-h transport of birds on basal diets, 3) a 3-h transport of birds on 600 or 4) 1,200 mg/kg CMH supplementation diets. The results showed that the 3-h transport decreased the concentration of creatine (Cr) in both the pectoralis major (PM) and the tibialis anterior (TA) muscles, increased the concentration of phosphocreatine (PCr) and PCr/Cr ratio in PM muscle, and elevated the concentrations of thiobarbituric acid-reactive substances and the activities of total superoxide dismutase and glutathione peroxidase in both the PM and TA muscles of birds (P < 0.05). In addition, transport also upregulated mRNA expression of avian uncoupling protein and heat shock protein 70 in both the PM and TA muscles, as well as avian peroxisome proliferator-activated receptor γ coactivator-1α in the TA muscle (P < 0.05). Dietary supplementation with 1,200 mg/kg CMH increased the concentrations of Cr and PCr in PM muscle, and Cr in TA muscle than those in the 3-h transport group (P < 0.05). However, contrary to our hypothesis, dietary CMH did not alter the measured parameters in relation to muscle lipid peroxidation and antioxidant capacity affected by 3-h transport (P > 0.05). These results indicate that dietary CMH supplementation does not provide any significant protection via directly scavenging free radicals or increased antioxidant capacity of transported broilers.

KEYWORDS:

antioxidant capacity; broiler; creatine monohydrate; lipid peroxidation; transport stress

PMID:
26371332
DOI:
10.3382/ps/pev255
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center