Format

Send to

Choose Destination
Plant Physiol. 2015 Nov;169(3):1991-2005. doi: 10.1104/pp.15.00568. Epub 2015 Sep 14.

The Nitrate-Inducible NAC Transcription Factor TaNAC2-5A Controls Nitrate Response and Increases Wheat Yield.

Author information

1
State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Sciences, Chinese Academy of Sciences, Beijing 100101, China (X.H., B.Q., W.L., X.Z., W.T., W.M., B.L., Z.L., Y.T.); andCollege of Agronomy/State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China (Y.R.).
2
State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Sciences, Chinese Academy of Sciences, Beijing 100101, China (X.H., B.Q., W.L., X.Z., W.T., W.M., B.L., Z.L., Y.T.); andCollege of Agronomy/State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China (Y.R.) yptong@genetics.ac.cn.

Abstract

Nitrate is a major nitrogen resource for cereal crops; thus, understanding nitrate signaling in cereal crops is valuable for engineering crops with improved nitrogen use efficiency. Although several regulators have been identified in nitrate sensing and signaling in Arabidopsis (Arabidopsis thaliana), the equivalent information in cereals is missing. Here, we isolated a nitrate-inducible and cereal-specific NAM, ATAF, and CUC (NAC) transcription factor, TaNAC2-5A, from wheat (Triticum aestivum). A chromatin immunoprecipitation assay showed that TaNAC2-5A could directly bind to the promoter regions of the genes encoding nitrate transporter and glutamine synthetase. Overexpression of TaNAC2-5A in wheat enhanced root growth and nitrate influx rate and, hence, increased the root's ability to acquire nitrogen. Furthermore, we found that TaNAC2-5A-overexpressing transgenic wheat lines had higher grain yield and higher nitrogen accumulation in aerial parts and allocated more nitrogen in grains in a field experiment. These results suggest that TaNAC2-5A is involved in nitrate signaling and show that it is an exciting gene resource for breeding crops with more efficient use of fertilizer.

PMID:
26371233
PMCID:
PMC4634051
DOI:
10.1104/pp.15.00568
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center