Format

Send to

Choose Destination
J Cardiol. 2016 Jan;67(1):22-7. doi: 10.1016/j.jjcc.2015.08.002. Epub 2015 Sep 8.

Cardioprotective mechanism of omega-3 polyunsaturated fatty acids.

Author information

1
Department of Cardiology, Keio University School of Medicine, Tokyo, Japan. Electronic address: jinendo@keio.jp.
2
Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan; Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan. Electronic address: makoto.arita@riken.jp.

Abstract

Omega-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid and docosahexaenoic acid, are widely regarded as cardioprotective. Several large-scale, randomized clinical trials have shown that dietary intake of omega-3 PUFAs improves the prognosis of patients with symptomatic heart failure or recent myocardial infarction. Therefore, dietary consumption of omega-3 PUFA is recommended in international guidelines for the general population to prevent the occurrence of cardiovascular diseases (CVDs). However, the precise mechanisms underlying the cardioprotective effects of omega-3 PUFAs are not fully understood. Omega-3 PUFAs can be incorporated into the phospholipid bilayer of cell membranes and can affect membrane fluidity, lipid microdomain formation, and signaling across membranes. Omega-3 PUFAs also modulate the function of membrane ion channels, such as Na and L-type Ca channels, to prevent lethal arrhythmias. Moreover, omega-3 PUFAs also prevent the conversion of arachidonic acid into pro-inflammatory eicosanoids by serving as an alternative substrate for cyclooxygenase or lipoxygenase, resulting in the production of less potent products. In addition, a number of enzymatically oxygenated metabolites derived from omega-3 PUFAs were recently identified as anti-inflammatory mediators. These omega-3 metabolites may contribute to the beneficial effects against CVDs that are attributed to omega-3 PUFAs.

KEYWORDS:

18-Hydroxyeicosapentaenoic acid; Anti-inflammation; Cardiovascular disease; Omega-3 polyunsaturated fatty acids; Specialized proresolving mediators

PMID:
26359712
DOI:
10.1016/j.jjcc.2015.08.002
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center