Format

Send to

Choose Destination
PLoS Biol. 2015 Sep 9;13(9):e1002247. doi: 10.1371/journal.pbio.1002247. eCollection 2015.

The Maternal Maverick/GDF15-like TGF-β Ligand Panda Directs Dorsal-Ventral Axis Formation by Restricting Nodal Expression in the Sea Urchin Embryo.

Author information

1
Institut de Biologie Valrose, iBV, UMR 7277 CNRS, Inserm U1091, UNS, University of Nice Sophia Antipolis, Nice, France.

Abstract

Specification of the dorsal-ventral axis in the highly regulative sea urchin embryo critically relies on the zygotic expression of nodal, but whether maternal factors provide the initial spatial cue to orient this axis is not known. Although redox gradients have been proposed to entrain the dorsal-ventral axis by acting upstream of nodal, manipulating the activity of redox gradients only has modest consequences, suggesting that other factors are responsible for orienting nodal expression and defining the dorsal-ventral axis. Here we uncover the function of Panda, a maternally provided transforming growth factor beta (TGF-β) ligand that requires the activin receptor-like kinases (Alk) Alk3/6 and Alk1/2 receptors to break the radial symmetry of the embryo and orient the dorsal-ventral axis by restricting nodal expression. We found that the double inhibition of the bone morphogenetic protein (BMP) type I receptors Alk3/6 and Alk1/2 causes a phenotype dramatically more severe than the BMP2/4 loss-of-function phenotype, leading to extreme ventralization of the embryo through massive ectopic expression of nodal, suggesting that an unidentified signal acting through BMP type I receptors cooperates with BMP2/4 to restrict nodal expression. We identified this ligand as the product of maternal Panda mRNA. Double inactivation of panda and bmp2/4 led to extreme ventralization, mimicking the phenotype caused by inactivation of the two BMP receptors. Inhibition of maternal panda mRNA translation disrupted the early spatial restriction of nodal, leading to persistent massive ectopic expression of nodal on the dorsal side despite the presence of Lefty. Phylogenetic analysis indicates that Panda is not a prototypical BMP ligand but a member of a subfamily of TGF-β distantly related to Inhibins, Lefty, and TGF-β that includes Maverick from Drosophila and GDF15 from vertebrates. Indeed, overexpression of Panda does not appear to directly or strongly activate phosphoSmad1/5/8 signaling, suggesting that although this TGF-β may require Alk1/2 and/or Alk3/6 to antagonize nodal expression, it may do so by sequestering a factor essential for Nodal signaling, by activating a non-Smad pathway downstream of the type I receptors, or by activating extremely low levels of pSmad1/5/8. We provide evidence that, although panda mRNA is broadly distributed in the early embryo, local expression of panda mRNA efficiently orients the dorsal-ventral axis and that Panda activity is required locally in the early embryo to specify this axis. Taken together, these findings demonstrate that maternal panda mRNA is both necessary and sufficient to orient the dorsal-ventral axis. These results therefore provide evidence that in the highly regulative sea urchin embryo, the activity of spatially restricted maternal factors regulates patterning along the dorsal-ventral axis.

PMID:
26352141
PMCID:
PMC4564238
DOI:
10.1371/journal.pbio.1002247
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center