Send to

Choose Destination
J Bacteriol. 2015 Dec;197(23):3629-44. doi: 10.1128/JB.00277-15. Epub 2015 Sep 8.

Physiological Roles and Adverse Effects of the Two Cystine Importers of Escherichia coli.

Author information

Department of Microbiology, University of Illinois, Urbana, Illinois, USA.
Department of Microbiology, University of Illinois, Urbana, Illinois, USA


When cystine is added to Escherichia coli, the bacterium becomes remarkably sensitive to hydrogen peroxide. This effect is due to enlarged intracellular pools of cysteine, which can drive Fenton chemistry. Genetic analysis linked the sensitivity to YdjN, a secondary transporter that along with the FliY-YecSC ABC system is responsible for cystine uptake. FliY-YecSC has a nanomolar Km and is essential for import of trace cystine, whereas YdjN has a micromolar Km and is the predominant importer when cystine is more abundant. Oddly, both systems are strongly induced by the CysB response to sulfur scarcity. The FliY-YecSC system can import a variety of biomolecules, including diaminopimelate; it is therefore vulnerable to competitive inhibition, presumably warranting YdjN induction under low-sulfur conditions. But the consequence is that if micromolar cystine then becomes available, the abundant YdjN massively overimports it, at >30 times the total sulfur demand of the cell. The imported cystine is rapidly reduced to cysteine in a glutathione-dependent process. This action avoids the hazard of disulfide stress, but it precludes feedback inhibition of YdjN by cystine. We conjecture that YdjN possesses no cysteine allosteric site because the isostructural amino acid serine might inappropriately bind in its place. Instead, the cell partially resolves the overaccumulation of cysteine by immediately excreting it, completing a futile import/reduction/export cycle that consumes a large amount of cellular energy. These unique, wasteful, and dangerous features of cystine metabolism are reproduced by other bacteria. We propose to rename ydjN as tcyP and fliY-yecSC as tcyJLN.


In general, intracellular metabolite pools are kept at steady, nontoxic levels by a sophisticated combination of transcriptional and allosteric controls. Surprisingly, in E. coli allosteric control is utterly absent from the primary importer of cystine. This flaw allows massive overimport of cystine, which causes acute vulnerability to oxidative stress and is remedied only by wasteful cysteine efflux. The lack of import control may be rationalized by the unusual properties of cysteine itself. This phenomenon justifies the existence of countervailing cysteine export systems, whose purpose is otherwise hard to understand. It also highlights an unexpected link between sulfur metabolism and oxidative damage. Although this investigation focused upon E. coli, experiments confirmed that similar phenomena occur in other species.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center