Send to

Choose Destination
Nat Nanotechnol. 2015 Nov;10(11):980-5. doi: 10.1038/nnano.2015.194. Epub 2015 Sep 7.

A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries.

Author information

Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA.
Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA.
Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA.
Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA.


Sodium-ion batteries have recently attracted significant attention as an alternative to lithium-ion batteries because sodium sources do not present the geopolitical issues that lithium sources might. Although recent reports on cathode materials for sodium-ion batteries have demonstrated performances comparable to their lithium-ion counterparts, the major scientific challenge for a competitive sodium-ion battery technology is to develop viable anode materials. Here we show that a hybrid material made out of a few phosphorene layers sandwiched between graphene layers shows a specific capacity of 2,440 mA h g(-1) (calculated using the mass of phosphorus only) at a current density of 0.05 A g(-1) and an 83% capacity retention after 100 cycles while operating between 0 and 1.5 V. Using in situ transmission electron microscopy and ex situ X-ray diffraction techniques, we explain the large capacity of our anode through a dual mechanism of intercalation of sodium ions along the x axis of the phosphorene layers followed by the formation of a Na3P alloy. The presence of graphene layers in the hybrid material works as a mechanical backbone and an electrical highway, ensuring that a suitable elastic buffer space accommodates the anisotropic expansion of phosphorene layers along the y and z axial directions for stable cycling operation.


Supplemental Content

Loading ...
Support Center