Format

Send to

Choose Destination
J Neurosci Methods. 2016 Feb 15;260:185-201. doi: 10.1016/j.jneumeth.2015.08.030. Epub 2015 Sep 3.

In vivo models of cortical acquired epilepsy.

Author information

1
Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), Local F-6500, 2601 de la Canardière, Québec, QC, Canada G1J2G3.
2
Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), Local F-6500, 2601 de la Canardière, Québec, QC, Canada G1J2G3; Department of Psychiatry and Neuroscience, Université Laval, Québec, Canada.
3
Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), Local F-6500, 2601 de la Canardière, Québec, QC, Canada G1J2G3; Department of Psychiatry and Neuroscience, Université Laval, Québec, Canada. Electronic address: igor.timofeev@fmed.ulaval.ca.

Abstract

The neocortex is the site of origin of several forms of acquired epilepsy. Here we provide a brief review of experimental models that were recently developed to study neocortical epileptogenesis as well as some major results obtained with these methods. Most of neocortical seizures appear to be nocturnal and it is known that neuronal activities reveal high levels of synchrony during slow-wave sleep. Therefore, we start the review with a description of mechanisms of neuronal synchronization and major forms of synchronized normal and pathological activities. Then, we describe three experimental models of seizures and epileptogenesis: ketamine-xylazine anesthesia as feline seizure triggered factor, cortical undercut as cortical penetrating wound model and neocortical kindling. Besides specific technical details describing these models we also provide major features of pathological brain activities recorded during epileptogenesis and seizures. The most common feature of all models of neocortical epileptogenesis is the increased duration of network silent states that up-regulates neuronal excitability and eventually leads to epilepsy.

KEYWORDS:

Epilepsy; Epileptogenesis; Kindling; Seizure; Trauma; Undercut

PMID:
26343530
PMCID:
PMC4744568
DOI:
10.1016/j.jneumeth.2015.08.030
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center