Format

Send to

Choose Destination
PLoS One. 2015 Sep 2;10(9):e0136879. doi: 10.1371/journal.pone.0136879. eCollection 2015.

Yeast Mitochondrial Transcription Factor Mtf1 Determines the Precision of Promoter-Directed Initiation of RNA Polymerase Rpo41.

Author information

1
Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, United States of America.
2
Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, 77555, United States of America.

Abstract

Despite their clear T7-bacteriophage origin, mitochondrial RNA polymerases have evolved to require transcription factors. All mitochondrial polymerases contain an extra N-terminal domain that has no counterpart in the self-proficient phage enzyme, which is therefore hypothesized to interact with transcription factors. We studied a series of N-terminal deletion mutants of yeast mitochondrial RNA polymerase, Rpo41, and have found that the N-terminal region does not abolish the effects of Mtf1; rather it contributes directly to enzyme catalysis. Mtf1 can rescue the defective Rpo41 enzymes resulted from N-terminal domain deletions. Although Rpo41 appears to have retained all promoter recognition elements found in T7 RNAP, the elements are not independently functional, and Mtf1 is necessary and sufficient for holoenzyme promoter-directed transcription activity.

PMID:
26332125
PMCID:
PMC4558008
DOI:
10.1371/journal.pone.0136879
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center