Format

Send to

Choose Destination
Gastroenterology. 2015 Nov;149(6):1361-77. doi: 10.1053/j.gastro.2015.08.034. Epub 2015 Aug 28.

Zebrafish: an important tool for liver disease research.

Author information

1
Divisions of Genetics and Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Gastrointestinal Cancer Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts; Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts; Broad Institute of MIT and Harvard, Harvard Medical School, Boston, Massachusetts.
2
Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York. Electronic address: kirsten.edepli@nyu.edu.

Abstract

As the incidence of hepatobiliary diseases increases, we must improve our understanding of the molecular, cellular, and physiological factors that contribute to the pathogenesis of liver disease. Animal models help us identify disease mechanisms that might be targeted therapeutically. Zebrafish (Danio rerio) have traditionally been used to study embryonic development but are also important to the study of liver disease. Zebrafish embryos develop rapidly; all of their digestive organs are mature in larvae by 5 days of age. At this stage, they can develop hepatobiliary diseases caused by developmental defects or toxin- or ethanol-induced injury and manifest premalignant changes within weeks. Zebrafish are similar to humans in hepatic cellular composition, function, signaling, and response to injury as well as the cellular processes that mediate liver diseases. Genes are highly conserved between humans and zebrafish, making them a useful system to study the basic mechanisms of liver disease. We can perform genetic screens to identify novel genes involved in specific disease processes and chemical screens to identify pathways and compounds that act on specific processes. We review how studies of zebrafish have advanced our understanding of inherited and acquired liver diseases as well as liver cancer and regeneration.

KEYWORDS:

Development; Liver Cancer; Regeneration; Technology; Toxicology

PMID:
26319012
PMCID:
PMC4762709
DOI:
10.1053/j.gastro.2015.08.034
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center