Send to

Choose Destination
Nat Commun. 2015 Aug 27;6:8072. doi: 10.1038/ncomms9072.

Efficient expression of full-length antibodies in the cytoplasm of engineered bacteria.

Author information

School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA.
New England Biolabs, 240 County Road, Ipswich, Massachusetts 01938, USA.


Current methods for producing immunoglobulin G (IgG) antibodies in engineered cells often require refolding steps or secretion across one or more biological membranes. Here, we describe a robust expression platform for biosynthesis of full-length IgG antibodies in the Escherichia coli cytoplasm. Synthetic heavy and light chains, both lacking canonical export signals, are expressed in specially engineered E. coli strains that permit formation of stable disulfide bonds within the cytoplasm. IgGs with clinically relevant antigen- and effector-binding activities are readily produced in the E. coli cytoplasm by grafting antigen-specific variable heavy and light domains into a cytoplasmically stable framework and remodelling the fragment crystallizable domain with amino-acid substitutions that promote binding to Fcγ receptors. The resulting cytoplasmic IgGs—named 'cyclonals'—effectively bypass the potentially rate-limiting steps of membrane translocation and glycosylation.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center