Format

Send to

Choose Destination
J Mol Endocrinol. 2015 Oct;55(2):R23-36. doi: 10.1530/JME-15-0067. Epub 2015 Aug 25.

Bone remodeling in the context of cellular and systemic regulation: the role of osteocytes and the nervous system.

Author information

1
Department of Orthopedics and PhysiotherapyCollegium Medicum, Jagiellonian University, Cracow, PolandDepartment of Cell Biology and ImagingInstitute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Cracow, Poland.
2
Department of Orthopedics and PhysiotherapyCollegium Medicum, Jagiellonian University, Cracow, PolandDepartment of Cell Biology and ImagingInstitute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Cracow, Poland joanna.filipowska@uj.edu.pl.

Abstract

Bone is a dynamic tissue that undergoes constant remodeling. The appropriate course of this process determines development and regeneration of the skeleton. Tight molecular control of bone remodeling is vital for the maintenance of appropriate physiology and microarchitecture of the bone, providing homeostasis, also at the systemic level. The process of remodeling is regulated by a rich innervation of the skeleton, being the source of various growth factors, neurotransmitters, and hormones regulating function of the bone. Although the course of bone remodeling at the cellular level is mainly associated with the activity of osteoclasts and osteoblasts, recently also osteocytes have gained a growing interest as the principal regulators of bone turnover. Osteocytes play a significant role in the regulation of osteogenesis, releasing sclerostin (SOST), an inhibitor of bone formation. The process of bone turnover, especially osteogenesis, is also modulated by extra-skeletal molecules. Proliferation and differentiation of osteoblasts are promoted by the brain-derived serotonin and hypothetically inhibited by its intestinal equivalent. The activity of SOST and serotonin is either directly or indirectly associated with the canonical Wnt/β-catenin signaling pathway, the main regulatory pathway of osteoblasts function. The impairment of bone remodeling may lead to many skeletal diseases, such as high bone mass syndrome or osteoporosis. In this paper, we review the most recent data on the cellular and molecular mechanisms of bone remodeling control, with particular emphasis on the role of osteocytes and the nervous system in this process.

KEYWORDS:

Wnt/β-catenin pathway; bone; bone diseases; bone remodeling; bone resorption; nervous system; osteoblasts; osteoclasts; osteocytes; osteogenesis; sclerostin; serotonin

PMID:
26307562
DOI:
10.1530/JME-15-0067
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Sheridan PubFactory
Loading ...
Support Center