Format

Send to

Choose Destination
See comment in PubMed Commons below
Cell Stem Cell. 2015 Oct 1;17(4):422-34. doi: 10.1016/j.stem.2015.07.007. Epub 2015 Aug 20.

Inflammation-Induced Emergency Megakaryopoiesis Driven by Hematopoietic Stem Cell-like Megakaryocyte Progenitors.

Author information

1
Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Hematopoietic Stem Cells and Stress Group, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany.
2
European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany.
3
Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany.
4
Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, 4058 Basel, Switzerland.
5
Core Facility Flow Cytometry, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany.
6
European Molecular Biology Laboratory (EMBL), Electron Microscopy Core Facility, 69117 Heidelberg, Germany.
7
Institute for Molecular Medicine, Ulm University, 89081 Ulm, Germany; Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA.
8
Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Experimental Hematology Group, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany.
9
European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany; Stanford Genome Technology Center, Palo Alto, CA 94304, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
10
Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany.
11
Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Hematopoietic Stem Cells and Stress Group, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany. Electronic address: m.essers@dkfz.de.

Abstract

Infections are associated with extensive platelet consumption, representing a high risk for health. However, the mechanism coordinating the rapid regeneration of the platelet pool during such stress conditions remains unclear. Here, we report that the phenotypic hematopoietic stem cell (HSC) compartment contains stem-like megakaryocyte-committed progenitors (SL-MkPs), a cell population that shares many features with multipotent HSCs and serves as a lineage-restricted emergency pool for inflammatory insults. During homeostasis, SL-MkPs are maintained in a primed but quiescent state, thus contributing little to steady-state megakaryopoiesis. Even though lineage-specific megakaryocyte transcripts are expressed, protein synthesis is suppressed. In response to acute inflammation, SL-MkPs become activated, resulting in megakaryocyte protein production from pre-existing transcripts and a maturation of SL-MkPs and other megakaryocyte progenitors. This results in an efficient replenishment of platelets that are lost during inflammatory insult. Thus, our study reveals an emergency machinery that counteracts life-threatening platelet depletions during acute inflammation.

PMID:
26299573
DOI:
10.1016/j.stem.2015.07.007
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center