Format

Send to

Choose Destination
IEEE Trans Image Process. 2016 Jan;25(1):53-64. doi: 10.1109/TIP.2015.2467217. Epub 2015 Aug 11.

Non-Rigid Point Set Registration by Preserving Global and Local Structures.

Abstract

In previous work on point registration, the input point sets are often represented using Gaussian mixture models and the registration is then addressed through a probabilistic approach, which aims to exploit global relationships on the point sets. For non-rigid shapes, however, the local structures among neighboring points are also strong and stable and thus helpful in recovering the point correspondence. In this paper, we formulate point registration as the estimation of a mixture of densities, where local features, such as shape context, are used to assign the membership probabilities of the mixture model. This enables us to preserve both global and local structures during matching. The transformation between the two point sets is specified in a reproducing kernel Hilbert space and a sparse approximation is adopted to achieve a fast implementation. Extensive experiments on both synthesized and real data show the robustness of our approach under various types of distortions, such as deformation, noise, outliers, rotation, and occlusion. It greatly outperforms the state-of-the-art methods, especially when the data is badly degraded.

PMID:
26276991
PMCID:
PMC5748386
DOI:
10.1109/TIP.2015.2467217
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for IEEE Engineering in Medicine and Biology Society Icon for PubMed Central
Loading ...
Support Center