Format

Send to

Choose Destination
J Am Chem Soc. 2015 Sep 2;137(34):11085-94. doi: 10.1021/jacs.5b05835. Epub 2015 Aug 20.

The Mechanism of Iron(II)-Catalyzed Asymmetric Mukaiyama Aldol Reaction in Aqueous Media: Density Functional Theory and Artificial Force-Induced Reaction Study.

Author information

1
Fukui Institute for Fundamental Chemistry, Kyoto University , Kyoto 606-8103, Japan.
2
Department of Chemistry, School of Science, The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

Abstract

Density functional theory (DFT), combined with the artificial force-induced reaction (AFIR) method, is used to establish the mechanism of the aqueous Mukaiyama aldol reactions catalyzed by a chiral Fe(II) complex. On the bases of the calculations, we identified several thermodynamically stable six- or seven-coordinate complexes in the solution, where the high-spin quintet state is the ground state. Among them, the active intermediates for the selectivity-determining outer-sphere carbon-carbon bond formation are proposed. The multicomponent artificial force-induced reaction (MC-AFIR) method found key transition states for the carbon-carbon bond formation, and explained the enantioselectivity and diastereoselectivity. The overall mechanism consists of the coordination of the aldehyde, carbon-carbon bond formation, the rate-determining proton transfer from water to aldehyde, and dissociation of trimethylsilyl group. The calculated full catalytic cycle is consistent with the experiments. This study provides important mechanistic insights for the transition metal catalyzed Mukaiyama aldol reaction in aqueous media.

PMID:
26267294
DOI:
10.1021/jacs.5b05835
Free full text

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center