Rigid Coumarins: a Complete DFT, TD-DFT and Non Linear Optical Property Study

J Fluoresc. 2015 Sep;25(5):1469-80. doi: 10.1007/s10895-015-1638-6. Epub 2015 Aug 13.

Abstract

The electronic structures and photophysical properties of rigid coumarin dyes have been studied by using quantum chemical methods. The ground-state geometries of these dyes were optimized using the Density Functional Theory (DFT) methods. The lowest singlet excited state was optimized using Time -Dependent Density Functional Theory [TD-B3LYP/6-31G(d)]. On the basis of ground- and excited-state geometries, the absorption and emission spectra have been calculated using the DFT and TD-DFT method. All the calculations were carried out in gas phase and in acetonitrile medium. The results show that the absorption maxima and fluorescence emission maxima calculated using the Time-Dependent Density Functional Theory is in good agreement with the available experimental results. To understand the Non- Linear Optical properties of coumarin dyes we computed dipole moment (μ), electronic polarizability (α), mean first hyperpolarizability (βo) and second hyperpolarizability (γ) using B3LYP density functional theory method in conjunction with 6-31G(d) basis set.

Keywords: DFT; Hyperpolarizability study; Rigid coumarins; TD-DFT.