Send to

Choose Destination
J Bone Miner Res. 2016 Feb;31(2):403-15. doi: 10.1002/jbmr.2612. Epub 2015 Aug 29.

WHI-131 Promotes Osteoblast Differentiation and Prevents Osteoclast Formation and Resorption in Mice.

Author information

Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Korea.
Imaging Science-Based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Korea.
Department of Oral Physiology, School of Dentistry, Wonkwang University, Iksan, Korea.
Division of Rheumatology, Department of Internal Medicine, Wonkwang University, Iksan, Korea.
Institute for Skeletal Disease, Wonkwang University, Iksan, Korea.


The small molecule WHI-131 is a potent therapeutic agent with anti-inflammatory, antiallergic, and antileukemic potential. However, the regulatory effects of WHI-131 on osteoblast and osteoclast activity are unclear. We examined the effects of WHI-131 on osteoblast and osteoclast differentiation with respect to bone remodeling. The production of receptor activator of nuclear factor kappa-B ligand (RANKL) by osteoblasts in response to interleukin (IL)-1 or IL-6 stimulation decreased by 56.8% or 50.58%, respectively, in the presence of WHI-131. WHI-131 also abrogated the formation of mature osteoclasts induced by IL-1 or IL-6 stimulation. Moreover, WHI-131 treatment decreased RANKL-induced osteoclast differentiation of bone marrow-derived macrophages, and reduced the resorbing activity of mature osteoclasts. WHI-131 further decreased the mRNA and protein expression levels of c-Fos and nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) by almost twofold, and significantly downregulated the mRNA expression of the following genes: tartrate-resistant acid phosphatase (TRAP), osteoclast-associated receptor (OSCAR), DC-STAMP, OC-STAMP, ATP6v0d2, and cathepsin K (CtsK) compared with the control group. WHI-131 further suppressed the phosphorylation of protein kinase B (Akt) and degradation of inhibitor of kappa B (IκB); Ca(2+) oscillation was also affected, and phosphorylation of the C-terminal Src kinase (c-Src)-Bruton agammaglobulinemia tyrosine kinase (Btk)-phospholipase C gamma 2 (PLCγ2) (c-Src-Btk-PLCg2 calcium signaling pathway) was inhibited following WHI-131 treatment. The Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway was activated by WHI-131, accompanied by phosphorylation of STAT3 Ser727 and dephosphorylation of STAT6. In osteoblasts, WHI-131 caused an approximately fourfold increase in alkaline phosphatase activity and Alizarin Red staining intensity. Treatment with WHI-131 increased the mRNA expression levels of genes related to osteoblast differentiation, and induced the phosphorylation of Akt, p38, and Smad1/5/8. Furthermore, 5-week-old ICR mice treated with WHI-131 exhibited antiresorbing effects in a lipopolysaccharide-induced calvaria bone loss model in vivo and increased bone-forming activity in a calvarial bone formation model. Therefore, the results of this study show that WHI-131 plays a dual role by inhibiting osteoclast differentiation and promoting osteoblast differentiation. Thus, WHI-131 could be a useful pharmacological agent to treat osteoporosis by promoting bone growth and inhibiting resorption.



[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center