Format

Send to

Choose Destination
Cell. 2015 Jul 30;162(3):607-21. doi: 10.1016/j.cell.2015.06.060.

The Regulatory Factor ZFHX3 Modifies Circadian Function in SCN via an AT Motif-Driven Axis.

Author information

1
MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK.
2
MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
3
New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10012, USA.
4
Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
5
Acute Stroke Program, Radcliffe Department of Clinical Medicine, University of Oxford, Oxford OX3 9DU, UK.
6
MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK.
7
Department of Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands; Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan.
8
MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK. Electronic address: p.nolan@har.mrc.ac.uk.

Abstract

We identified a dominant missense mutation in the SCN transcription factor Zfhx3, termed short circuit (Zfhx3(Sci)), which accelerates circadian locomotor rhythms in mice. ZFHX3 regulates transcription via direct interaction with predicted AT motifs in target genes. The mutant protein has a decreased ability to activate consensus AT motifs in vitro. Using RNA sequencing, we found minimal effects on core clock genes in Zfhx3(Sci/+) SCN, whereas the expression of neuropeptides critical for SCN intercellular signaling was significantly disturbed. Moreover, mutant ZFHX3 had a decreased ability to activate AT motifs in the promoters of these neuropeptide genes. Lentiviral transduction of SCN slices showed that the ZFHX3-mediated activation of AT motifs is circadian, with decreased amplitude and robustness of these oscillations in Zfhx3(Sci/+) SCN slices. In conclusion, by cloning Zfhx3(Sci), we have uncovered a circadian transcriptional axis that determines the period and robustness of behavioral and SCN molecular rhythms.

PMID:
26232227
PMCID:
PMC4537516
DOI:
10.1016/j.cell.2015.06.060
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center