The mechanical effects of extracorporeal irradiation on bone

Bone Joint J. 2015 Aug;97-B(8):1152-6. doi: 10.1302/0301-620X.97B8.35729.

Abstract

Extracorporeal irradiation of an excised tumour-bearing segment of bone followed by its re-implantation is a technique used in bone sarcoma surgery for limb salvage when the bone is of reasonable quality. There is no agreement among previous studies about the dose of irradiation to be given: up to 300 Gy have been used. We investigated the influence of extracorporeal irradiation on the elastic and viscoelastic properties of bone. Bone was harvested from mature cattle and subdivided into 13 groups: 12 were exposed to increasing levels of irradiation: one was not and was used as a control. The specimens, once irradiated, underwent mechanical testing in saline at 37°C. The mechanical properties of each group, including Young's modulus, storage modulus and loss modulus, were determined experimentally and compared with the control group. There were insignificant changes in all of these mechanical properties with an increasing level of irradiation. We conclude that the overall mechanical effect of high levels of extracorporeal irradiation (300 Gy) on bone is negligible. Consequently the dose can be maximised to reduce the risk of local tumour recurrence.

Keywords: Bone biomechanics; Extracorporeal irradiation.

MeSH terms

  • Animals
  • Bone Neoplasms / radiotherapy*
  • Bone Neoplasms / surgery*
  • Cattle
  • Elastic Modulus
  • In Vitro Techniques
  • Limb Salvage / methods*
  • Stress, Mechanical
  • Tibia / radiation effects*
  • Viscosity