Format

Send to

Choose Destination
FEMS Microbiol Lett. 2015 Aug;362(16). pii: fnv116. doi: 10.1093/femsle/fnv116. Epub 2015 Jul 27.

Molecular cloning and characterization of two YGL039w genes encoding broad specificity NADPH-dependent aldehyde reductases from Kluyveromyces marxianus strain DMB1.

Author information

1
Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Sciences and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan h-akita@aist.go.jp.
2
Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Sciences and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan.
3
Bioproduction Research Institute, National Institute of Advanced Industrial Sciences and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 2-12-1-M6-5 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
4
Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Sciences and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan Bioproduction Research Institute, National Institute of Advanced Industrial Sciences and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan.

Abstract

Two genes from Kluyveromyces marxianus strain DMB1, YGL039w1 and YGL039w2, encode putative uncharacterized oxidoreductases that respectively share 42 and 44% identity with the Saccharomyces cerevisiae S288c NADPH-dependent methylglyoxal reductase (EC 1.1.1.283). To determine the enzymatic characteristics of their products, the two genes were expressed in recombinant Escherichia coli cells, after which the YGL039w1 and YGL039w2 proteins were purified to homogeneity. In the presence of NADPH, both enzymes showed reductive activities toward at least nine aldehyde substrates, but no NADP(+)-dependent oxidative activities. These two YGL039w proteins thus appear to be aldehyde reductases. In addition, although both enzymes retained more than 70% of their activities after incubation for 30 min at temperatures below 40°C or at pHs between 5.5 and 11.3, YGL039w2 was slightly more thermostable than YGL039w1.

KEYWORDS:

Kluyveromyces marxianus; aldehyde inhibitor; methylglyoxal; reductase

PMID:
26223585
DOI:
10.1093/femsle/fnv116
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center