Format

Send to

Choose Destination
Nucleic Acids Res. 2015 Sep 18;43(16):7984-8001. doi: 10.1093/nar/gkv762. Epub 2015 Jul 28.

Identification of siRNA delivery enhancers by a chemical library screen.

Author information

1
Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108 01307, Dresden, Germany INSERM U1065, Centre Méditerranéen de Médecine Moléculaire C3M, Nice, France; Université de Nice Sophia-Antipolis, Nice, France.
2
Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108 01307, Dresden, Germany.
3
Alnylam Pharmaceuticals, Cambridge, MA, USA.
4
Lomonosov Moscow State University, Chemistry Department, Leninskie Gory, 1/3, Moscow 119991, Russia Skolkovo Institute of Science and Technology, 100 Novaya str., Skolkovo, Odinsovsky district, Moscow 143025, Russia.
5
Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany Chemical Biology, Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany.
6
Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108 01307, Dresden, Germany Zerial@MPI-CBG.de.

Abstract

Most delivery systems for small interfering RNA therapeutics depend on endocytosis and release from endo-lysosomal compartments. One approach to improve delivery is to identify small molecules enhancing these steps. It is unclear to what extent such enhancers can be universally applied to different delivery systems and cell types. Here, we performed a compound library screen on two well-established siRNA delivery systems, lipid nanoparticles and cholesterol conjugated-siRNAs. We identified fifty-one enhancers improving gene silencing 2-5 fold. Strikingly, most enhancers displayed specificity for one delivery system only. By a combination of quantitative fluorescence and electron microscopy we found that the enhancers substantially differed in their mechanism of action, increasing either endocytic uptake or release of siRNAs from endosomes. Furthermore, they acted either on the delivery system itself or the cell, by modulating the endocytic system via distinct mechanisms. Interestingly, several compounds displayed activity on different cell types. As proof of principle, we showed that one compound enhanced siRNA delivery in primary endothelial cells in vitro and in the endocardium in the mouse heart. This study suggests that a pharmacological approach can improve the delivery of siRNAs in a system-specific fashion, by exploiting distinct mechanisms and acting upon multiple cell types.

PMID:
26220182
PMCID:
PMC4652771
DOI:
10.1093/nar/gkv762
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center