Send to

Choose Destination
Endocrinology. 2015 Oct;156(10):3528-37. doi: 10.1210/en.2015-1424. Epub 2015 Jul 27.

Coenzyme Q10 Prevents Insulin Signaling Dysregulation and Inflammation Prior to Development of Insulin Resistance in Male Offspring of a Rat Model of Poor Maternal Nutrition and Accelerated Postnatal Growth.

Author information

University of Cambridge Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit (J.L.T.-A., D.S.F.-T., R.M., J.-H.C., A.C., J.M.M., S.E.O.), Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge CB2 OQQ, United Kingdom; and Neurometabolic Unit (I.P.H.), National Hospital, University College London, London WC1N 3BG, United Kingdom.


Low birth weight and rapid postnatal growth increases the risk of developing insulin resistance and type 2 diabetes in later life. However, underlying mechanisms and potential intervention strategies are poorly defined. Here we demonstrate that male Wistar rats exposed to a low-protein diet in utero that had a low birth weight but then underwent postnatal catch-up growth (recuperated offspring) had reductions in the insulin signaling proteins p110-β (13% ± 6% of controls [P < .001]) and insulin receptor substrate-1 (39% ± 10% of controls [P < .05]) in adipose tissue. These changes were not accompanied by any change in expression of the corresponding mRNAs, suggesting posttranscriptional regulation. Recuperated animals displayed evidence of a proinflammatory phenotype of their adipose tissue with increased IL-6 (139% ± 8% [P < .05]) and IL1-β (154% ± 16% [P < .05]) that may contribute to the insulin signaling protein dysregulation. Postweaning dietary supplementation of recuperated animals with coenzyme Q (CoQ10) (1 mg/kg of body weight per day) prevented the programmed reduction in insulin receptor substrate-1 and p110-β and the programmed increased in IL-6. These findings suggest that postweaning CoQ10 supplementation has antiinflammatory properties and can prevent programmed changes in insulin-signaling protein expression. We conclude that CoQ10 supplementation represents an attractive intervention strategy to prevent the development of insulin resistance that results from suboptimal in utero nutrition.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center