Format

Send to

Choose Destination
Mol Cancer Ther. 2015 Oct;14(10):2364-73. doi: 10.1158/1535-7163.MCT-15-0163. Epub 2015 Jul 23.

Antileukemic Activity of 2-Deoxy-d-Glucose through Inhibition of N-Linked Glycosylation in Acute Myeloid Leukemia with FLT3-ITD or c-KIT Mutations.

Author information

1
Cancer Research Center of Toulouse (CRCT), UMR1037 INSERM, ERL5294 CNRS, Toulouse, France. Université Toulouse III Paul Sabatier, Toulouse, France.
2
Cancer Research Center of Toulouse (CRCT), UMR1037 INSERM, ERL5294 CNRS, Toulouse, France. Université Toulouse III Paul Sabatier, Toulouse, France. Laboratoire d'Hématologie, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France.
3
Institut Cochin, Département Développement, Reproduction, Cancer, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France. Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.
4
Cancer Research Center of Toulouse (CRCT), UMR1037 INSERM, ERL5294 CNRS, Toulouse, France. Université Toulouse III Paul Sabatier, Toulouse, France. Service d'Hématologie, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France. recher.christian@iuct-oncopole.fr.

Abstract

We assessed the antileukemic activity of 2-deoxy-d-glucose (2-DG) through the modulation of expression of receptor tyrosine kinases (RTK) commonly mutated in acute myeloid leukemia (AML). We used human leukemic cell lines cells, both in vitro and in vivo, as well as leukemic samples from AML patients to demonstrate the role of 2-DG in tumor cell growth inhibition. 2-DG, through N-linked glycosylation inhibition, affected the cell-surface expression and cellular signaling of both FTL3-ITD and mutated c-KIT and induced apoptotic cell death. Leukemic cells harboring these mutated RTKs (MV4-11, MOLM-14, Kasumi-1, and TF-1 c-KIT D816V) were the most sensitive to 2-DG treatment in vitro as compared with nonmutated cells. 2-DG activity was also demonstrated in leukemic cells harboring FLT3-TKD mutations resistant to the tyrosine kinase inhibitor (TKI) quizartinib. Moreover, the antileukemic activity of 2-DG was particularly marked in c-KIT-mutated cell lines and cell samples from core binding factor-AML patients. In these cells, 2-DG inhibited the cell-surface expression of c-KIT, abrogated STAT3 and MAPK-ERK pathways, and strongly downregulated the expression of the receptor resulting in a strong in vivo effect in NOD/SCID mice xenografted with Kasumi-1 cells. Finally, we showed that 2-DG decreases Mcl-1 protein expression in AML cells and induces sensitization to both the BH3 mimetic inhibitor of Bcl-xL, Bcl-2 and Bcl-w, ABT-737, and cytarabine. In conclusion, 2-DG displays a significant antileukemic activity in AML with FLT3-ITD or KIT mutations, opening a new therapeutic window in a subset of AML with mutated RTKs.

PMID:
26206337
DOI:
10.1158/1535-7163.MCT-15-0163
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center