Format

Send to

Choose Destination
Phys Rev Lett. 2015 Jun 26;114(25):252302. Epub 2015 Jun 26.

Observation of Charge Asymmetry Dependence of Pion Elliptic Flow and the Possible Chiral Magnetic Wave in Heavy-Ion Collisions.

Adamczyk L1, Adkins JK2, Agakishiev G3, Aggarwal MM4, Ahammed Z5, Alekseev I6, Alford J7, Aparin A3, Arkhipkin D8, Aschenauer EC8, Averichev GS3, Banerjee A5, Bellwied R9, Bhasin A10, Bhati AK4, Bhattarai P11, Bielcik J12, Bielcikova J13, Bland LC8, Bordyuzhin IG6, Bouchet J7, Brandin AV14, Bunzarov I3, Burton TP8, Butterworth J15, Caines H16, Calderón de la Barca Sánchez M17, Campbell JM18, Cebra D17, Cervantes MC19, Chakaberia I8, Chaloupka P12, Chang Z19, Chattopadhyay S5, Chen JH20, Chen X21, Cheng J22, Cherney M23, Christie W8, Contin G24, Crawford HJ25, Das S26, De Silva LC23, Debbe RR8, Dedovich TG3, Deng J27, Derevschikov AA28, di Ruzza B8, Didenko L8, Dilks C29, Dong X24, Drachenberg JL30, Draper JE17, Du CM21, Dunkelberger LE31, Dunlop JC8, Efimov LG3, Engelage J25, Eppley G15, Esha R31, Evdokimov O32, Eyser O8, Fatemi R2, Fazio S8, Federic P13, Fedorisin J3, Feng Z33, Filip P3, Fisyak Y8, Flores CE17, Fulek L1, Gagliardi CA19, Garand D34, Geurts F15, Gibson A30, Girard M35, Greiner L24, Grosnick D30, Gunarathne DS36, Guo Y37, Gupta S10, Gupta A10, Guryn W8, Hamad A7, Hamed A19, Haque R38, Harris JW16, He L34, Heppelmann S8, Heppelmann S29, Hirsch A34, Hoffmann GW11, Hofman DJ32, Horvat S16, Huang HZ31, Huang B32, Huang X22, Huck P33, Humanic TJ18, Igo G31, Jacobs WW39, Jang H40, Jiang K37, Judd EG25, Kabana S7, Kalinkin D6, Kang K22, Kauder K41, Ke HW8, Keane D7, Kechechyan A3, Khan ZH32, Kikola DP35, Kisel I42, Kisiel A35, Koetke DD30, Kollegger T42, Kosarzewski LK35, Kotchenda L14, Kraishan AF36, Kravtsov P14, Krueger K43, Kulakov I42, Kumar L4, Kycia RA44, Lamont MA8, Landgraf JM8, Landry KD31, Lauret J8, Lebedev A8, Lednicky R3, Lee JH8, Li W20, Li Y22, Li C37, Li N33, Li ZM33, Li X36, Li X8, Lisa MA18, Liu F33, Ljubicic T8, Llope WJ41, Lomnitz M7, Longacre RS8, Luo X33, Ma L20, Ma R8, Ma YG20, Ma GL20, Magdy N45, Majka R16, Manion A24, Margetis S7, Markert C11, Masui H24, Matis HS24, McDonald D9, Meehan K17, Minaev NG28, Mioduszewski S19, Mohanty B38, Mondal MM19, Morozov DA28, Mustafa MK24, Nandi BK46, Nasim M31, Nayak TK5, Nigmatkulov G14, Nogach LV28, Noh SY40, Novak J47, Nurushev SB28, Odyniec G24, Ogawa A8, Oh K48, Okorokov V14, Olvitt DL Jr36, Page BS8, Pak R8, Pan YX31, Pandit Y32, Panebratsev Y3, Pawlik B44, Pei H33, Perkins C25, Peterson A18, Pile P8, Planinic M49, Pluta J35, Poljak N49, Poniatowska K35, Porter J24, Posik M36, Poskanzer AM24, Pruthi NK4, Putschke J41, Qiu H24, Quintero A7, Ramachandran S2, Raniwala S50, Raniwala R50, Ray RL11, Ritter HG24, Roberts JB15, Rogachevskiy OV3, Romero JL17, Roy A5, Ruan L8, Rusnak J13, Rusnakova O12, Sahoo NR19, Sahu PK26, Sakrejda I24, Salur S24, Sandweiss J16, Sarkar A46, Schambach J11, Scharenberg RP34, Schmah AM24, Schmidke WB8, Schmitz N51, Seger J23, Seyboth P51, Shah N31, Shahaliev E3, Shanmuganathan PV7, Shao M37, Sharma B4, Sharma MK10, Shen WQ20, Shi SS33, Shou QY20, Sichtermann EP24, Sikora R1, Simko M13, Skoby MJ39, Smirnov D8, Smirnov N16, Song L9, Sorensen P8, Spinka HM43, Srivastava B34, Stanislaus TD30, Stepanov M34, Stock R42, Strikhanov M14, Stringfellow B34, Sumbera M13, Summa BJ29, Sun X24, Sun XM33, Sun Z21, Sun Y37, Surrow B36, Svirida DN6, Szelezniak MA24, Tang Z37, Tang AH8, Tarnowsky T47, Tawfik AN45, Thomas JH24, Timmins AR9, Tlusty D13, Tokarev M3, Trentalange S31, Tribble RE19, Tribedy P5, Tripathy SK26, Trzeciak BA12, Tsai OD31, Ullrich T8, Underwood DG43, Upsal I18, Van Buren G8, van Nieuwenhuizen G8, Vandenbroucke M36, Varma R46, Vasiliev AN28, Vertesi R13, Videbaek F8, Viyogi YP5, Vokal S3, Voloshin SA41, Vossen A39, Wang F34, Wang Y22, Wang H8, Wang JS21, Wang Y33, Wang G31, Webb G8, Webb JC8, Wen L31, Westfall GD47, Wieman H24, Wissink SW39, Witt R52, Wu YF33, Xiao Z22, Xie W34, Xin K15, Xu YF20, Xu N24, Xu Z8, Xu QH27, Xu H21, Yang Y33, Yang Y21, Yang C37, Yang S37, Yang Q37, Ye Z32, Yepes P15, Yi L34, Yip K8, Yoo IK48, Yu N33, Zbroszczyk H35, Zha W37, Zhang XP22, Zhang JB33, Zhang J21, Zhang Z20, Zhang S20, Zhang Y37, Zhang JL27, Zhao F31, Zhao J33, Zhong C20, Zhou L37, Zhu X22, Zoulkarneeva Y3, Zyzak M42; STAR Collaboration.

Author information

1
AGH University of Science and Technology, Cracow 30-059, Poland.
2
University of Kentucky, Lexington, Kentucky 40506-0055, USA.
3
Joint Institute for Nuclear Research, Dubna 141 980, Russia.
4
Panjab University, Chandigarh 160014, India.
5
Variable Energy Cyclotron Centre, Kolkata 700064, India.
6
Alikhanov Institute for Theoretical and Experimental Physics, Moscow 117218, Russia.
7
Kent State University, Kent, Ohio 44242, USA.
8
Brookhaven National Laboratory, Upton, New York 11973, USA.
9
University of Houston, Houston, Texas 77204, USA.
10
University of Jammu, Jammu 180001, India.
11
University of Texas, Austin, Texas 78712, USA.
12
Czech Technical University in Prague, FNSPE, Prague 115 19, Czech Republic.
13
Nuclear Physics Institute AS CR, 250 68 Řež/Prague, Czech Republic.
14
Moscow Engineering Physics Institute, Moscow 115409, Russia.
15
Rice University, Houston, Texas 77251, USA.
16
Yale University, New Haven, Connecticut 06520, USA.
17
University of California, Davis, California 95616, USA.
18
The Ohio State University, Columbus, Ohio 43210, USA.
19
Texas A&M University, College Station, Texas 77843, USA.
20
Shanghai Institute of Applied Physics, Shanghai 201800, China.
21
Institute of Modern Physics, Lanzhou 730000, China.
22
Tsinghua University, Beijing 100084, China.
23
Creighton University, Omaha, Nebraska 68178, USA.
24
Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
25
University of California, Berkeley, California 94720, USA.
26
Institute of Physics, Bhubaneswar 751005, India.
27
Shandong University, Jinan, Shandong 250100, China.
28
Institute of High Energy Physics, Protvino 142281, Russia.
29
Pennsylvania State University, University Park, Pennsylvania 16802, USA.
30
Valparaiso University, Valparaiso, Indiana 46383, USA.
31
University of California, Los Angeles, California 90095, USA.
32
University of Illinois at Chicago, Chicago, Illinois 60607, USA.
33
Central China Normal University (HZNU), Wuhan 430079, China.
34
Purdue University, West Lafayette, Indiana 47907, USA.
35
Warsaw University of Technology, Warsaw 00-661, Poland.
36
Temple University, Philadelphia, Pennsylvania 19122, USA.
37
University of Science and Technology of China, Hefei 230026, China.
38
National Institute of Science Education and Research, Bhubaneswar 751005, India.
39
Indiana University, Bloomington, Indiana 47408, USA.
40
Korea Institute of Science and Technology Information, Daejeon 305-701, Korea.
41
Wayne State University, Detroit, Michigan 48201, USA.
42
Frankfurt Institute for Advanced Studies FIAS, Frankfurt 60438, Germany.
43
Argonne National Laboratory, Argonne, Illinois 60439, USA.
44
Institute of Nuclear Physics PAN, Cracow 31-342, Poland.
45
World Laboratory for Cosmology and Particle Physics (WLCAPP), Cairo 11571, Egypt.
46
Indian Institute of Technology, Mumbai 400076, India.
47
Michigan State University, East Lansing, Michigan 48824, USA.
48
Pusan National University, Pusan 609735, Republic of Korea.
49
University of Zagreb, Zagreb HR-10002, Croatia.
50
University of Rajasthan, Jaipur 302004, India.
51
Max-Planck-Institut fur Physik, Munich 80805, Germany.
52
United States Naval Academy, Annapolis, Maryland 21402, USA.

Abstract

We present measurements of π(-) and π(+) elliptic flow, v(2), at midrapidity in Au+Au collisions at √[s(NN)]=200, 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV, as a function of event-by-event charge asymmetry, A(ch), based on data from the STAR experiment at RHIC. We find that π(-) (π(+)) elliptic flow linearly increases (decreases) with charge asymmetry for most centrality bins at √[s(NN)]=27  GeV and higher. At √[s(NN)]=200  GeV, the slope of the difference of v(2) between π(-) and π(+) as a function of A(ch) exhibits a centrality dependence, which is qualitatively similar to calculations that incorporate a chiral magnetic wave effect. Similar centrality dependence is also observed at lower energies.

PMID:
26197122
DOI:
10.1103/PhysRevLett.114.252302
Free full text

Supplemental Content

Full text links

Icon for American Physical Society Icon for eScholarship, California Digital Library, University of California
Loading ...
Support Center