Format

Send to

Choose Destination
ACS Appl Mater Interfaces. 2015 Aug 12;7(31):17527-34. doi: 10.1021/acsami.5b05451. Epub 2015 Aug 3.

Three-Dimensional LiMnPO4·Li3V2(PO4)3/C Nanocomposite as a Bicontinuous Cathode for High-Rate and Long-Life Lithium-Ion Batteries.

Author information

1
†State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
2
‡WUT Powerful Energy Company, Ltd., Wuhan 430223, P. R. China.

Abstract

Olivine-type LiMnPO4 has been extensively studied as a high-energy density cathode material for lithium-ion batteries. To improve both the ionic and electronic conductivities of LiMnPO4, a series of carbon-decorated LiMnPO4·Li3V2(PO4)3 nanocomposites are synthesized by a facile sol-gel method combined with the conventional solid-state method. The optimized composite presents a three-dimensional hierarchical structure with active nanoparticles well-embedded in a conductive carbon matrix. The combination of the nanoscale carbon coating and the microscale carbon network could provide a more active site for electrochemical reaction, as well as a highly conductive network for both electron and lithium-ion transportation. When cycled at 20 C, an initial specific capacity of 103 mA h g(-1) can be obtained and the capacity retention reaches 68% after 3000 cycles, corresponding to a capacity fading of 0.013% per cycle. The stable capacity and excellent rate capability make this carbon-decorated LiMnPO4·Li3V2(PO4)3 nanocomposite a promising cathode for lithium-ion batteries.

KEYWORDS:

high rate; lithium-ion diffusion; lithium−manganese phosphate; lithium−vanadium phosphate; long life

PMID:
26196544
DOI:
10.1021/acsami.5b05451

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center