Send to

Choose Destination
ACS Appl Mater Interfaces. 2015 Aug 12;7(31):17527-34. doi: 10.1021/acsami.5b05451. Epub 2015 Aug 3.

Three-Dimensional LiMnPO4·Li3V2(PO4)3/C Nanocomposite as a Bicontinuous Cathode for High-Rate and Long-Life Lithium-Ion Batteries.

Author information

†State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
‡WUT Powerful Energy Company, Ltd., Wuhan 430223, P. R. China.


Olivine-type LiMnPO4 has been extensively studied as a high-energy density cathode material for lithium-ion batteries. To improve both the ionic and electronic conductivities of LiMnPO4, a series of carbon-decorated LiMnPO4·Li3V2(PO4)3 nanocomposites are synthesized by a facile sol-gel method combined with the conventional solid-state method. The optimized composite presents a three-dimensional hierarchical structure with active nanoparticles well-embedded in a conductive carbon matrix. The combination of the nanoscale carbon coating and the microscale carbon network could provide a more active site for electrochemical reaction, as well as a highly conductive network for both electron and lithium-ion transportation. When cycled at 20 C, an initial specific capacity of 103 mA h g(-1) can be obtained and the capacity retention reaches 68% after 3000 cycles, corresponding to a capacity fading of 0.013% per cycle. The stable capacity and excellent rate capability make this carbon-decorated LiMnPO4·Li3V2(PO4)3 nanocomposite a promising cathode for lithium-ion batteries.


high rate; lithium-ion diffusion; lithium−manganese phosphate; lithium−vanadium phosphate; long life


Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center