Format

Send to

Choose Destination
J Exp Bot. 2015 Oct;66(20):6399-413. doi: 10.1093/jxb/erv348. Epub 2015 Jul 16.

A role for seed storage proteins in Arabidopsis seed longevity.

Author information

1
Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands Department of Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands.
2
INRA, Institut Jean-Pierre Bourgin, UMR 1318 INRA-AgroParisTech, ERL CNRS 3559, Laboratory of Excellence 'Saclay Plant Sciences' (LabEx SPS), RD10, F-78026 Versailles Cedex, France AgroParisTech, Chair of Plant Physiology, 16 rue Claude Bernard, F-75231 Paris Cedex 05, France.
3
Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon S7N5A9, Canada Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan S7N 0X2, Canada.
4
Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands Department of Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands leonie.bentsink@wur.nl.

Abstract

Proteomics approaches have been a useful tool for determining the biological roles and functions of individual proteins and identifying the molecular mechanisms that govern seed germination, vigour and viability in response to ageing. In this work the dry seed proteome of four Arabidopsis thaliana genotypes, that carry introgression fragments at the position of seed longevity quantitative trait loci and as a result display different levels of seed longevity, was investigated. Seeds at two physiological states, after-ripened seeds that had the full germination ability and aged (stored) seeds of which the germination ability was severely reduced, were compared. Aged dry seed proteomes were markedly different from the after-ripened and reflected the seed longevity level of the four genotypes, despite the fact that dry seeds are metabolically quiescent. Results confirmed the role of antioxidant systems, notably vitamin E, and indicated that protection and maintenance of the translation machinery and energy pathways are essential for seed longevity. Moreover, a new role for seed storage proteins (SSPs) was identified in dry seeds during ageing. Cruciferins (CRUs) are the most abundant SSPs in Arabidopsis and seeds of a triple mutant for three CRU isoforms (crua crub cruc) were more sensitive to artificial ageing and their seed proteins were highly oxidized compared with wild-type seeds. These results confirm that oxidation is involved in seed deterioration and that SSPs buffer the seed from oxidative stress, thus protecting important proteins required for seed germination and seedling formation.

KEYWORDS:

Arabidopsis; carbonylation; proteomics; reactive oxygen species; seed longevity; seed storage proteins.

PMID:
26184996
PMCID:
PMC4588887
DOI:
10.1093/jxb/erv348
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center