Format

Send to

Choose Destination
Arterioscler Thromb Vasc Biol. 2015 Sep;35(9):1945-53. doi: 10.1161/ATVBAHA.115.305597. Epub 2015 Jul 16.

Local MicroRNA Modulation Using a Novel Anti-miR-21-Eluting Stent Effectively Prevents Experimental In-Stent Restenosis.

Author information

1
From the Department of Cardiovascular Surgery, TSI-Laboratory (D.W., T.D., M.S., S.S.) and Department of Cardiovascular Surgery (T.D., H.R.), University Heart Center Hamburg, Hamburg, Germany; Department of Cardiovascular Surgery, Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (D.W., T.D., M.S., S.S.); Atherosclerosis Research Unit, Department of Medicine, Karolinska Institute, CMM L8:03, Stockholm, Sweden (E.C., S.M.E., H.J., Y.L., A.B., L.M.); Unit of Physiology, Pathophysiology, and Experimental Endocrinology, University of Veterinary Medicine, Vienna, Austria (R.G.E.); Department of Cardiology Asklepios Clinic St. Georg, Hamburg, Germany (C.-H.H.); Translumina GmbH, Hechingen, Germany (B.B.); Department of Cardiothoracic Surgery, Stanford Cardiovascular Institute, Stanford University, CA (R.C.R., S.S.); Department of Cardiovascular Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (J.M.S., P.S.T.); and Department of Cardiovascular Medicine, Stanford Cardiovascular Institute, Stanford University, CA (J.M.S., P.S.T.).
2
From the Department of Cardiovascular Surgery, TSI-Laboratory (D.W., T.D., M.S., S.S.) and Department of Cardiovascular Surgery (T.D., H.R.), University Heart Center Hamburg, Hamburg, Germany; Department of Cardiovascular Surgery, Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (D.W., T.D., M.S., S.S.); Atherosclerosis Research Unit, Department of Medicine, Karolinska Institute, CMM L8:03, Stockholm, Sweden (E.C., S.M.E., H.J., Y.L., A.B., L.M.); Unit of Physiology, Pathophysiology, and Experimental Endocrinology, University of Veterinary Medicine, Vienna, Austria (R.G.E.); Department of Cardiology Asklepios Clinic St. Georg, Hamburg, Germany (C.-H.H.); Translumina GmbH, Hechingen, Germany (B.B.); Department of Cardiothoracic Surgery, Stanford Cardiovascular Institute, Stanford University, CA (R.C.R., S.S.); Department of Cardiovascular Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (J.M.S., P.S.T.); and Department of Cardiovascular Medicine, Stanford Cardiovascular Institute, Stanford University, CA (J.M.S., P.S.T.). schrepfer@stanford.edu.

Erratum in

Abstract

OBJECTIVE:

Despite advances in stent technology for vascular interventions, in-stent restenosis (ISR) because of myointimal hyperplasia remains a major complication.

APPROACH AND RESULTS:

We investigated the regulatory role of microRNAs in myointimal hyperplasia/ISR, using a humanized animal model in which balloon-injured human internal mammary arteries with or without stenting were transplanted into Rowett nude rats, followed by microRNA profiling. miR-21 was the only significantly upregulated candidate. In addition, miR-21 expression was increased in human tissue samples from patients with ISR compared with coronary artery disease specimen. We systemically repressed miR-21 via intravenous fluorescein-tagged-locked nucleic acid-anti-miR-21 (anti-21) in our humanized myointimal hyperplasia model. As expected, suppression of vascular miR-21 correlated dose dependently with reduced luminal obliteration. Furthermore, anti-21 did not impede reendothelialization. However, systemic anti-miR-21 had substantial off-target effects, lowering miR-21 expression in liver, heart, lung, and kidney with concomitant increase in serum creatinine levels. We therefore assessed the feasibility of local miR-21 suppression using anti-21-coated stents. Compared with bare-metal stents, anti-21-coated stents effectively reduced ISR, whereas no significant off-target effects could be observed.

CONCLUSION:

This study demonstrates the efficacy of an anti-miR-coated stent for the reduction of ISR.

KEYWORDS:

coronary restenosis; hyperplasia; microRNAs; rats; stents

PMID:
26183619
PMCID:
PMC4552606
DOI:
10.1161/ATVBAHA.115.305597
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center