Format

Send to

Choose Destination
Neuron. 2015 Jul 15;87(2):257-70. doi: 10.1016/j.neuron.2015.05.025.

A Primer on Pattern-Based Approaches to fMRI: Principles, Pitfalls, and Perspectives.

Author information

1
Bernstein Center for Computational Neuroscience, Charité - Universitätsmedizin, 10117 Berlin, Germany; Berlin Center for Advanced Neuroimaging, Charité - Universitätsmedizin, 10117 Berlin, Germany; Berlin School of Mind and Brain, Humboldt Universität zu Berlin, 10117 Berlin, Germany; Department of Neurology, Charité - Universitätsmedizin, 10117 Berlin, Germany; Department of Psychology, Humboldt Universität zu Berlin, 10117 Berlin, Germany; Cluster of Excellence NeuroCure, Charité - Universitätsmedizin, 10117 Berlin, Germany; SFB 940, Volition and Cognitive Control, Technische Universität Dresden, 01069 Dresden, Germany. Electronic address: haynes@bccn-berlin.de.

Abstract

Human fMRI signals exhibit a spatial patterning that contains detailed information about a person's mental states. Using classifiers it is possible to access this information and study brain processes at the level of individual mental representations. The precise link between fMRI signals and neural population signals still needs to be unraveled. Also, the interpretation of classification studies needs to be handled with care. Nonetheless, pattern-based analyses make it possible to investigate human representational spaces in unprecedented ways, especially when combined with computational modeling.

PMID:
26182413
DOI:
10.1016/j.neuron.2015.05.025
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center