Send to

Choose Destination
Mol Endocrinol. 2015 Aug;29(8):1195-218. doi: 10.1210/me.2015-1021. Epub 2015 Jul 16.

Research Resource: Androgen Receptor Activity Is Regulated Through the Mobilization of Cell Surface Receptor Networks.

Author information

Department of Molecular Physiology and Biophysics (J.J.H., B.H.N., M.M.S., H.D.M., M.E.W.), Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242; Department of Pharmacology (H.D.M., R.J.J., I.V.H., M.E.W.), School of Medicine and Genome Center, University of California, Davis, California 95616; Departments of Pathology and Computational Medicine and Bioinformatics (D.F., A.I.N.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Genome Sciences (J.K.E.), University of Washington, Seattle, Washington 98195.


The aberrant expression of androgen receptor (AR)-dependent transcriptional programs is a defining pathology of the development and progression of prostate cancers. Transcriptional cofactors that bind AR are critical determinants of prostate tumorigenesis. To gain a deeper understanding of the proteins linked to AR-dependent gene transcription, we performed a DNA-affinity chromatography-based proteomic screen designed to identify proteins involved in AR-mediated gene transcription in prostate tumor cells. Functional experiments validated the coregulator roles of known AR-binding proteins in AR-mediated transcription in prostate tumor cells. More importantly, novel coregulatory functions were detected in components of well-established cell surface receptor-dependent signal transduction pathways. Further experimentation demonstrated that components of the TNF, TGF-β, IL receptor, and epidermal growth factor signaling pathways modulated AR-dependent gene transcription and androgen-dependent proliferation in prostate tumor cells. Collectively, our proteomic dataset demonstrates that the cell surface receptor- and AR-dependent pathways are highly integrated, and provides a molecular framework for understanding how disparate signal-transduction pathways can influence AR-dependent transcriptional programs linked to the development and progression of human prostate cancers.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center