Format

Send to

Choose Destination
Nutr Rev. 2015 Aug;73 Suppl 1:28-31. doi: 10.1093/nutrit/nuv019.

Microbiota and the gut-brain axis.

Author information

1
J. Bienenstock, W. Kunze, and P. Forsythe are with the McMaster Brain-Body Institute at St Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada. J. Bienenstock is with the Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada. W. Kunze is with the Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada. P. Forsythe is with the Department of Medicine, McMaster University, Hamilton, Ontario, Canada. bienens@mcmaster.ca.
2
J. Bienenstock, W. Kunze, and P. Forsythe are with the McMaster Brain-Body Institute at St Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada. J. Bienenstock is with the Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada. W. Kunze is with the Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada. P. Forsythe is with the Department of Medicine, McMaster University, Hamilton, Ontario, Canada.

Abstract

Changes in gut microbiota can modulate the peripheral and central nervous systems, resulting in altered brain functioning, and suggesting the existence of a microbiota gut-brain axis. Diet can also change the profile of gut microbiota and, thereby, behavior. Effects of bacteria on the nervous system cannot be disassociated from effects on the immune system since the two are in constant bidirectional communication. While the composition of the gut microbiota varies greatly among individuals, alterations to the balance and content of common gut microbes may affect the production of molecules such as neurotransmitters, e.g., gamma amino butyric acid, and the products of fermentation, e.g., the short chain fatty acids butyrate, propionate, and acetate. Short chain fatty acids, which are pleomorphic, especially butyrate, positively influence host metabolism by promoting glucose and energy homeostasis, regulating immune responses and epithelial cell growth, and promoting the functioning of the central and peripheral nervous systems. In the future, the composition, diversity, and function of specific probiotics, coupled with similar, more detailed knowledge about gut microbiota, will potentially help in developing more effective diet- and drug-based therapies.

KEYWORDS:

behavior; brain; dysbiosis; gut; microbiota; probiotics.

PMID:
26175487
DOI:
10.1093/nutrit/nuv019
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center