Format

Send to

Choose Destination
J Biomed Mater Res B Appl Biomater. 2016 Oct;104(7):1495-503. doi: 10.1002/jbm.b.33478. Epub 2015 Jul 14.

Dehydrated human amnion/chorion membrane regulates stem cell activity in vitro.

Author information

1
MiMedx Group, Inc., 1775 West Oak Commons Court NE, Marietta, Georgia, 30062.
2
MiMedx Group, Inc., 1775 West Oak Commons Court NE, Marietta, Georgia, 30062. tkoob@mimedx.com.

Abstract

Human-derived placental tissues have been shown in randomized clinical trials to be effective for healing chronic wounds, and have also demonstrated the ability to recruit stem cells to the wound site in vitro and in vivo. In this study, PURION(®) Processed dehydrated human amnion/chorion membrane allografts (dHACM, EpiFix(®) , MiMedx Group, Marietta, GA) were evaluated for their ability to alter stem cell activity in vitro. Human bone marrow mesenchymal stem cells (BM-MSCs), adipose derived stem cells (ADSCs), and hematopoietic stem cells (HSCs) were treated with soluble extracts of dHACM tissue, and were evaluated for cellular proliferation, migration, and cytokine secretion. Stem cells were analyzed for cell number by DNA assay after 24 h, closure of an acellular zone using microscopy over 3 days, and soluble cytokine production in the medium of treated stem cells was analyzed after 3 days using a multiplex ELISA array. Treatment with soluble extracts of dHACM tissue stimulated BM-MSCs, ADSCs, and HSCs to proliferate with a significant increase in cell number after 24 h. dHACM treatment accelerated closure of an acellular zone by ADSCs and BM-MSCs after 3 days, compared to basal medium. BM-MSCs, ADSCs, and HSCs also modulated endogenous production of a number of various soluble signals, including regulators of inflammation, mitogenesis, and wound healing. dHACM treatment promoted increased proliferation and migration of ADSCs, BM-MSCs, and HSCs, along with modulation of secreted proteins from those cells. Therefore, dHACM may impact wound healing by amplifying host stem cell populations and modulating their responses in treated wound tissues.

KEYWORDS:

amniotic membrane; dHACM; dermal wound dressing; stem cells; wound healing

PMID:
26175122
PMCID:
PMC5054843
DOI:
10.1002/jbm.b.33478
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center