Format

Send to

Choose Destination
J Anim Ecol. 2015 Nov;84(6):1720-31. doi: 10.1111/1365-2656.12422. Epub 2015 Aug 21.

Raccoon contact networks predict seasonal susceptibility to rabies outbreaks and limitations of vaccination.

Author information

1
Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, USA.
2
Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA.
3
Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panamá, República de, Panamá
4
School of Environment and Natural Resources, The Ohio State University, Columbus, OH, USA.

Abstract

Infectious disease transmission often depends on the contact structure of host populations. Although it is often challenging to capture the contact structure in wild animals, new technology has enabled biologists to obtain detailed temporal information on wildlife social contacts. In this study, we investigated the effects of raccoon contact patterns on rabies spread using network modelling. Raccoons (Procyon lotor) play an important role in the maintenance of rabies in the United States. It is crucial to understand how contact patterns influence the spread of rabies in raccoon populations in order to design effective control measures and to prevent transmission to human populations and other animals. We constructed a dynamic system of contact networks based on empirical data from proximity logging collars on a wild suburban raccoon population and then simulated rabies spread across these networks. Our contact networks incorporated the number and duration of raccoon interactions. We included differences in contacts according to sex and season, and both short-term acquaintances and long-term associations. Raccoons may display different behaviours when infectious, including aggression (furious behaviour) and impaired mobility (dumb behaviour); the network model was used to assess the impact of potential behavioural changes in rabid raccoons. We also tested the effectiveness of different vaccination coverage levels. Our results demonstrate that when rabies enters a suburban raccoon population, the likelihood of a disease outbreak affecting the majority of the population is high. Both the magnitude of rabies outbreaks and the speed of rabies spread depend strongly on the time of year that rabies is introduced into the population. When there is a combination of dumb and furious behaviours in the rabid raccoon population, there are similar outbreak sizes and speed of spread to when there are no behavioural changes due to rabies infection. By incorporating detailed data describing the variation in raccoon contact rates into a network modelling approach, we were able to show that suburban raccoon populations are highly susceptible to rabies outbreaks, that the risk of large outbreaks varies seasonally and that current vaccination target levels may be inadequate to prevent the spread of rabies within these populations. Our findings provide new insights into rabies dynamics in raccoon populations and have important implications for disease control.

KEYWORDS:

contact network; epidemiological modelling; host-pathogen interactions; infectious disease management; network modelling; proximity logging collar; rabies; raccoon; transmission; wildlife disease

PMID:
26172427
DOI:
10.1111/1365-2656.12422
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center