Format

Send to

Choose Destination
Am J Med Genet B Neuropsychiatr Genet. 2015 Sep;168(6):423-432. doi: 10.1002/ajmg.b.32339. Epub 2015 Jul 14.

Epistatic and gene wide effects in YWHA and aromatic amino hydroxylase genes across ADHD and other common neuropsychiatric disorders: Association with YWHAE.

Author information

1
K.G. Jebsen Center for Research on Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway.
2
Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway.
3
Department of Clinical Science, University of Bergen, Bergen, Norway.
4
Division of Psychiatry, Haukeland University Hospital, Bergen, Norway.

Abstract

Monoamines critically modulate neurophysiological functions affected in several neuropsychiatric disorders. We therefore examined genes encoding key enzymes of catecholamine and serotonin biosynthesis (tyrosine and tryptophan hydroxylases-TH and TPH1/2) as well as their regulatory 14-3-3 proteins (encoded by YWHA-genes). Previous studies have focused mainly on the individual genes, but no analysis spanning this regulatory network has been reported. We explored interactions between these genes in Norwegian patients with adult attention deficit hyperactivity disorder (aADHD), followed by gene-complex association tests in four major neuropsychiatric conditions; childhood ADHD (cADHD), bipolar disorder, schizophrenia, and major depressive disorder. For interaction analyses, we evaluated 55 SNPs across these genes in a sample of 583 aADHD patients and 637 controls. For the gene-complex tests, we utilized the data from large-scale studies of The Psychiatric Genomics Consortium (PGC). The four major neuropsychiatric disorders were examined for association with each of the genes individually as well as in three complexes as follows: (1) TPH1 and YWHA-genes; (2) TH, TPH2 and YWHA-genes; and (3) all genes together. The results show suggestive epistasis between YWHAE and two other 14-3-3-genes - YWHAZ, YWHAQ - in aADHD (nominal P-value of 0.0005 and 0.0008, respectively). In PGC data, association between YWHAE and schizophrenia was noted (P = 1.00E-05), whereas the combination of TPH1 and YWHA-genes revealed signs of association in cADHD, schizophrenia, and bipolar disorder. In conclusion, polymorphisms in the YWHA-genes and their targets may exert a cumulative effect in ADHD and related neuropsychiatric conditions, warranting the need for further investigation of these gene-complexes. © 2015 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.

KEYWORDS:

ADHD; SCZ; TH; TPH; YWHA

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center