Format

Send to

Choose Destination
Cent Eur J Immunol. 2014;39(3):285-93. doi: 10.5114/ceji.2014.45113. Epub 2014 Oct 14.

Use of laser microdissection in the analysis of renal-infiltrating T cells in murine lupus.

Author information

1
Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University. Jinan City, Shandong, PR China ; Department of Nephrology, Shandong Province, PR China.
2
Department of Clinical Medicine, College of Clinical Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China.
3
Nephrology Department of The First people's Hospital of Tongliao in Inner Mongolia, Tongliao, Inner Mongolia, PR China.
4
Summus Biological Chemical Institute, Harbin Heilongjiang Province, PR China.
5
Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University. Jinan City, Shandong, PR China.

Abstract

OBJECTIVE:

To clarify the role of T cells in kidney pathology of three widely used murine lupus models.

MATERIAL AND METHODS:

Cells infiltrating the glomeruli and perivascular areas in MRL/lpr (n = 10 female), NZB× NZW F1 (B/W F1) (n = 9 female), and BXSB (n = 10 male) mice were captured by laser microdissection (LMD). Samples were subjected to nested reverse transcription polymerase chain reaction (RT-PCR) with primers specific to β-actin, T-cell receptor β chain (TCR-Cβ), interleukin (IL)-10, IL-13, IL-17, and interferon-g (IFN-γ). Frozen sections of lesions were also stained immunohistochemically for tissue and cellular characterization.

RESULTS:

T cells infiltrating the glomeruli and perivascular areas predominantly produced IFN-γ, IL-13, and IL-17 in MRL/lpr, B/W F1, and BXSB mice, with IL-17 expression in glomeruli of BXSB mice being significantly lower than that of MRL/lpr and B/W F1 mice. IL-10 was detected only in the perivascular areas of MRL/lpr and B/W F1 mice and not in glomeruli isolates. Immunohistochemical staining revealed positive for the expression of Thy-1, CD4, CD8, and B220 in glomeruli and perivascular areas from all three strains of mice.

CONCLUSIONS:

Cytokine balance in murine SLE is complex and cannot be attributed simply to the balance between Th1 and Th2 cells. Th17 cells may play a critical role in disease pathology, possibly with greater contribution toward disease progression in MRL/lpr and B/W F1 mice than in BXSB mice. Furthermore, these findings lend support to the concept that different molecular mechanisms underlie glomerulonephritis as compared to vasculitis.

KEYWORDS:

IL-17; glomerulonephritis; laser microdissection; murine lupus; vasculitis

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center