Format

Send to

Choose Destination
Nat Rev Genet. 2015 Aug;16(8):441-58. doi: 10.1038/nrg3934. Epub 2015 Jul 7.

Systems biology and gene networks in neurodevelopmental and neurodegenerative disorders.

Author information

1
1] Program in Neurobehavioral Genetics, Semel Institute, and Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA. [2] Interdepartmental Program in Neuroscience, University of California, Los Angeles, California 90095, USA.
2
1] Program in Neurobehavioral Genetics, Semel Institute, and Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA. [2] Center for Autism Treatment and Research, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA.
3
1] Program in Neurobehavioral Genetics, Semel Institute, and Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA. [2] Interdepartmental Program in Neuroscience, University of California, Los Angeles, California 90095, USA. [3] Center for Autism Treatment and Research, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA. [4] Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA.

Abstract

Genetic and genomic approaches have implicated hundreds of genetic loci in neurodevelopmental disorders and neurodegeneration, but mechanistic understanding continues to lag behind the pace of gene discovery. Understanding the role of specific genetic variants in the brain involves dissecting a functional hierarchy that encompasses molecular pathways, diverse cell types, neural circuits and, ultimately, cognition and behaviour. With a focus on transcriptomics, this Review discusses how high-throughput molecular, integrative and network approaches inform disease biology by placing human genetics in a molecular systems and neurobiological context. We provide a framework for interpreting network biology studies and leveraging big genomics data sets in neurobiology.

PMID:
26149713
PMCID:
PMC4699316
DOI:
10.1038/nrg3934
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center