Format

Send to

Choose Destination
See comment in PubMed Commons below
Nat Commun. 2015 Jul 3;6:7581. doi: 10.1038/ncomms8581.

Human Upf1 is a highly processive RNA helicase and translocase with RNP remodelling activities.

Author information

1
1] Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, Paris 75230, France [2] Institut de Biologie de l'Ecole Normale Supérieure, INSERM U1024, Paris 75230, France.
2
1] Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, Paris 75230, France [2] Institut de Biologie de l'Ecole Normale Supérieure, INSERM U1024, Paris 75230, France [3] Laboratoire de Physique Statistique, Ecole Normale Supérieure, Université Pierre et Marie Curie Paris, Université Paris Diderot, CNRS, 24 rue Lhomond, Paris 75005, France.

Abstract

RNA helicases are implicated in most cellular RNA-dependent events. In eukaryotes however, only few have been functionally characterized. Upf1 is a RNA helicase essential for nonsense-mediated mRNA decay (NMD). Here, using magnetic tweezers and bulk assays, we observe that human Upf1 is able to translocate slowly over long single-stranded nucleic acids with a processivity >10 kb. Upf1 efficiently translocates through double-stranded structures and protein-bound sequences, demonstrating that Upf1 is an efficient ribonucleoprotein complex remodeler. Our observation of processive unwinding by an eukaryotic RNA helicase reveals that Upf1, once recruited onto NMD mRNA targets, can scan the entire transcript to irreversibly remodel the mRNP, facilitating its degradation by the NMD machinery.

PMID:
26138914
PMCID:
PMC4506499
DOI:
10.1038/ncomms8581
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Support Center